
SIMD instructions in Hashtables

Pablo Rotondo
LIGM, Université Gustave Eiffel

Joint work with

Cyril Nicaud (LIGM)

Séminaire LIGM,
Champs-Sur-Marne, 27 January, 2026.

Introduction

▸ Aim: study and model actual implementations

● Engineers sometimes choose innovative implementations

e.g., TimSort in Python.

● Study choices in depth, make recommendations.

▸ Why not use textbook solutions?

● typical usage of data structures,

● architectural features of modern computers.

⇒ This talk: SIMD instructions (Single Instruction, Multiple Data)
in modern HashTables.

1 / 27

Introduction

▸ Aim: study and model actual implementations

● Engineers sometimes choose innovative implementations

e.g., TimSort in Python.

● Study choices in depth, make recommendations.

▸ Why not use textbook solutions?

● typical usage of data structures,

● architectural features of modern computers.

⇒ This talk: SIMD instructions (Single Instruction, Multiple Data)
in modern HashTables.

1 / 27

Introduction

▸ Aim: study and model actual implementations

● Engineers sometimes choose innovative implementations

e.g., TimSort in Python.

● Study choices in depth, make recommendations.

▸ Why not use textbook solutions?

● typical usage of data structures,

● architectural features of modern computers.

⇒ This talk: SIMD instructions (Single Instruction, Multiple Data)
in modern HashTables.

1 / 27

A crash course in HashTables

Motivation

Implement an associative array m:

– universe U of keys k ∈ U enormous,

– associate some keys k to values m[k],
– insert, search, delete...

Hashtables:

▸ Idea : use a small array A, of size n≪ ∣U∣
– consider h ∶ U → Z pseudo-random,

– insert k in bucket A[i] where i = h(k)modn.

▸ Problem : collisions, keys k1 and k2 with h(k1) = h(k2).

2 / 27

A crash course in HashTables

Motivation

Implement an associative array m:

– universe U of keys k ∈ U enormous,

– associate some keys k to values m[k],
– insert, search, delete...

Hashtables:

▸ Idea : use a small array A, of size n≪ ∣U∣
– consider h ∶ U → Z pseudo-random,

– insert k in bucket A[i] where i = h(k)modn.

▸ Problem : collisions, keys k1 and k2 with h(k1) = h(k2).

2 / 27

A crash course in HashTables 2

▸ Collision resolution policy :

1. [External Hashing / Closed addressing] Each bucket A[i]
contains a linked list.

2. [Internal Hashing / Open addressing] If bucket is occupied,
find another that is free.

3 / 27

A crash course in HashTables 2

▸ Collision resolution policy :

1. [External Hashing / Closed addressing] Each bucket A[i]
contains a linked list.

0

1

2

3

16 12

9

23 7

2. [Internal Hashing / Open addressing] If bucket is occupied,
find another that is free.

3 / 27

A crash course in HashTables 2

▸ Collision resolution policy :

1. [External Hashing / Closed addressing] Each bucket A[i]
contains a linked list.

2. [Internal Hashing / Open addressing] If bucket is occupied,
find another that is free.

Bucket 0 Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Bucket 6 Bucket 7

16 9 1410 2

[red arrow is indicative]

3 / 27

A crash course in HashTables 2

▸ Collision resolution policy :

1. [External Hashing / Closed addressing] Each bucket A[i]
contains a linked list.

2. [Internal Hashing / Open addressing] If bucket is occupied,
find another that is free.

▸ Rehashing policy:

– if load factor #keys
n

is “big” (> θ ∈ (0,1)), create larger array,
– must reinsert everything. [slow! but amortized overall]

3 / 27

Internal hashing / Open addressing
▸ Internal hashing / Open addressing more popular when looking for

performance (better locality).

▸ Many strategies to define the probe sequence.

Probing sequence

To search/insert x:

– Start at i0 = h(x)mod n.

– If occupied, test i1, i2, . . . etc. in order.

Modulo n,

▸ Linear probing: i1 = i0 + 1, i2 = i1 + 1, . . .
▸ Quadratic probing: i1 = i0 + 1, i2 = i1 + 2, . . ., ij = ij−1 + j, . . .
▸ Double hashing: ∆(x) = h2(x), i1 = i0 +∆, i2 = i1 +∆, . . .

Theoretical model: random probing model, each ij is taken uniformly

and independently from {0, . . . , n − 1}.

4 / 27

Internal hashing / Open addressing
▸ Internal hashing / Open addressing more popular when looking for

performance (better locality).

▸ Many strategies to define the probe sequence.

Probing sequence

To search/insert x:

– Start at i0 = h(x)mod n.

– If occupied, test i1, i2, . . . etc. in order.

Modulo n,

▸ Linear probing: i1 = i0 + 1, i2 = i1 + 1, . . .
▸ Quadratic probing: i1 = i0 + 1, i2 = i1 + 2, . . ., ij = ij−1 + j, . . .
▸ Double hashing: ∆(x) = h2(x), i1 = i0 +∆, i2 = i1 +∆, . . .

Theoretical model: random probing model, each ij is taken uniformly

and independently from {0, . . . , n − 1}.

4 / 27

Internal hashing / Open addressing
▸ Internal hashing / Open addressing more popular when looking for

performance (better locality).

▸ Many strategies to define the probe sequence.

Probing sequence

To search/insert x:

– Start at i0 = h(x)mod n.

– If occupied, test i1, i2, . . . etc. in order.

Modulo n,

▸ Linear probing: i1 = i0 + 1, i2 = i1 + 1, . . .
▸ Quadratic probing: i1 = i0 + 1, i2 = i1 + 2, . . ., ij = ij−1 + j, . . .
▸ Double hashing: ∆(x) = h2(x), i1 = i0 +∆, i2 = i1 +∆, . . .

Theoretical model: random probing model, each ij is taken uniformly

and independently from {0, . . . , n − 1}.

4 / 27

Internal hashing / Open addressing
▸ Internal hashing / Open addressing more popular when looking for

performance (better locality).

▸ Many strategies to define the probe sequence.

Probing sequence

To search/insert x:

– Start at i0 = h(x)mod n.

– If occupied, test i1, i2, . . . etc. in order.

Modulo n,

▸ Linear probing: i1 = i0 + 1, i2 = i1 + 1, . . .
▸ Quadratic probing: i1 = i0 + 1, i2 = i1 + 2, . . ., ij = ij−1 + j, . . .
▸ Double hashing: ∆(x) = h2(x), i1 = i0 +∆, i2 = i1 +∆, . . .

Theoretical model: random probing model, each ij is taken uniformly

and independently from {0, . . . , n − 1}.
4 / 27

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

Example: comparing vectors of 128 bits with 16 lanes of 1 byte

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

9 5 -2 4 7 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
mm cmpeq epi8

0 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0

Idea: buckets of b keys, keep header of metadata for each bucket

▸ reduced hash value (usually one byte) for each key

▸ when searching/inserting, compare reduced hash first

Principle of several modern hashtables:

boost::unordered flat map (b = 15), Google Abseil Swiss tables

(b = 16), F14 of Meta (b = 14)...

5 / 27

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

Example: comparing vectors of 128 bits with 16 lanes of 1 byte

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

9 5 -2 4 7 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
mm cmpeq epi8

0 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0

Idea: buckets of b keys, keep header of metadata for each bucket

▸ reduced hash value (usually one byte) for each key

▸ when searching/inserting, compare reduced hash first

Principle of several modern hashtables:

boost::unordered flat map (b = 15), Google Abseil Swiss tables

(b = 16), F14 of Meta (b = 14)...

5 / 27

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

Example: comparing vectors of 128 bits with 16 lanes of 1 byte

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

9 5 -2 4 7 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
mm cmpeq epi8

0 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0

Idea: buckets of b keys, keep header of metadata for each bucket

▸ reduced hash value (usually one byte) for each key

▸ when searching/inserting, compare reduced hash first

Principle of several modern hashtables:

boost::unordered flat map (b = 15), Google Abseil Swiss tables

(b = 16), F14 of Meta (b = 14)...

5 / 27

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

Example: comparing vectors of 128 bits with 16 lanes of 1 byte

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

9 5 -2 4 7 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
mm cmpeq epi8

0 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0

Idea: buckets of b keys, keep header of metadata for each bucket

▸ reduced hash value (usually one byte) for each key

▸ when searching/inserting, compare reduced hash first

Principle of several modern hashtables:

boost::unordered flat map (b = 15), Google Abseil Swiss tables

(b = 16), F14 of Meta (b = 14)...

5 / 27

Using vectorization in hash tables 2

bucket 0 bucket n−1bucket i

⋯ ⋯
⋯ ⋯header

table

9

x

5

y

9

z

4

u

-1-1-1-1-1-1-1-1-1-1-1-1

We consider the fingerprint byte

▸ to be 255 ≡ −1 when the position is free,

▸ to be 254 ≡ −2 when the position was deleted, [tombstone]

▸ else we have a reduced hash value.

6 / 27

Our model: parameters

We are interested in hops : [accesses to buckets]

▸ number of buckets accessed for a successful search,

▸ proportion of full buckets.

Insert k distinct elements into a table with n buckets:

▸ probe sequence made of random numbers {0, . . . , n − 1}.
▸ for the moment we do not consider deletions,

Later in talk: unsuccessful search.

7 / 27

Our model: parameters

We are interested in hops : [accesses to buckets]

▸ number of buckets accessed for a successful search,

▸ proportion of full buckets.

Insert k distinct elements into a table with n buckets:

▸ probe sequence made of random numbers {0, . . . , n − 1}.
▸ for the moment we do not consider deletions,

Later in talk: unsuccessful search.

7 / 27

Main results: proportion of occupancy
We are interested in hops :

▸ number of buckets accessed for a successful search,

▸ proportion of full buckets.

Let Uj(k) : # buckets with j occupied slots after k insertions,

Theorem [Nicaud, R, 26+]: proportion of occupancy

Suppose k ≤ θ ⋅N for θ ∈ (0,1), N ∶= b × n the maximum capacity.

With probability tending to one, we have uniformly

Uj(k) = nuj(k/N) + o(n) , ,

where uj(t) = λ(t)j

j! e−λ(t) for j = 0, . . . , b − 1, ub(t) = 1 −∑j<b uj(t)
and λ(t) = λb(t) is a special function we can computea.

aNote that S(k) ∶= ∑ jUj(k) increases always by 1, so ∑ juj(k) = bt.

8 / 27

Main results: proportion of occupancy
We are interested in hops :

▸ number of buckets accessed for a successful search,

▸ proportion of full buckets.

Let Uj(k) : # buckets with j occupied slots after k insertions,

Theorem [Nicaud, R, 26+]: proportion of occupancy

Suppose k ≤ θ ⋅N for θ ∈ (0,1), N ∶= b × n the maximum capacity.

With probability tending to one, we have uniformly

Uj(k) = nuj(k/N) + o(n) , ,

where uj(t) = λ(t)j

j! e−λ(t) for j = 0, . . . , b − 1, ub(t) = 1 −∑j<b uj(t)
and λ(t) = λb(t) is a special function we can computea.

aNote that S(k) ∶= ∑ jUj(k) increases always by 1, so ∑ juj(k) = bt.

8 / 27

Proportion of occupancy

Plot of a single run with n = 214 = 16 384, b = 15,

40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

0%

10%

20%

30%

40%

50%

Proportion of table occupancy

P
ro
p
or
ti
on

of
fu
ll
gr
ou

p
s

Predicted
Experiment

Stopped at θ = 0.875, maximum load of boost::unordered flat map.

9 / 27

Main results: number of hops

The special function λ(t) is associated to hops.

Let R(k) : be the total number of hops up the the k-th insertion,

Theorem [Nicaud, R, 26+]: number of hops

Suppose k ≤ θ ⋅N for θ ∈ (0,1), N ∶= b × n the maximum capacity.

With probability tending to one,

R(k) = nλb(k/N) + o(n) ,

λb(t) is defined implicitly by

e−λb(t)∑
i<b

(b − i) 1i!λb(t)i = b − bt .

10 / 27

Main results: number of hops

The special function λ(t) is associated to hops.

Let R(k) : be the total number of hops up the the k-th insertion,

Theorem [Nicaud, R, 26+]: number of hops

Suppose k ≤ θ ⋅N for θ ∈ (0,1), N ∶= b × n the maximum capacity.

With probability tending to one,

R(k) = nλb(k/N) + o(n) ,

λb(t) is defined implicitly by

e−λb(t)∑
i<b

(b − i) 1i!λb(t)i = b − bt .

10 / 27

Successful search

We consider the usual model for successful search:

▸ Pick an element uniformly at random from the k present.

▸ Classical model, others are possible.

Corollary (Successful search)

With high probability, the average successful search time is
λb(t)/(bt) + o(1), where t = k/N .

Proof.

The successful search time is R(k)/k.

11 / 27

Successful search

We consider the usual model for successful search:

▸ Pick an element uniformly at random from the k present.

▸ Classical model, others are possible.

Corollary (Successful search)

With high probability, the average successful search time is
λb(t)/(bt) + o(1), where t = k/N .

Proof.

The successful search time is R(k)/k.

11 / 27

Successful search

We consider the usual model for successful search:

▸ Pick an element uniformly at random from the k present.

▸ Classical model, others are possible.

Corollary (Successful search)

With high probability, the average successful search time is
λb(t)/(bt) + o(1), where t = k/N .

Proof.

The successful search time is R(k)/k.

11 / 27

Successful search

Plot of a single run with n = 214 = 16 384, b = 15,

40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

0

2 ⋅ 10−2

4 ⋅ 10−2

6 ⋅ 10−2

8 ⋅ 10−2

0.1

Proportion of table occupancy

E
xt
ra

h
op

s
in

su
cc
es
su
l
se
ar
ch

Predicted
Experiment

Stopped at θ = 0.875, maximum load of boost::unordered flat map.

12 / 27

The hops function λb(t)

▸ The case b = 1 : λ1(t) = log(1
1−t). Successful search time

coincides with the classical 1
t log(

1
1−t).

▸ The case b = 2 : using the −1-th branch of the Lambert-W

λb(t) = −2 −W−1 (−2−2t
e2
) .

Still, it remains logarithmic in order

Proposition

We have log (1
1−t
) ≤ λb(t) ≤ b log (1

1−t
) for all t. Moreover

λb(t) ∼ log (1
1−t
) as t→ 1− and λb(t) ∼ b log (1

1−t
) as t→ 0+.

▸ Cost of a successful search is related to λb(t)/b.
▸ Effect is not simply dividing the search time by b !

13 / 27

The hops function λb(t)

▸ The case b = 1 : λ1(t) = log(1
1−t). Successful search time

coincides with the classical 1
t log(

1
1−t).

▸ The case b = 2 : using the −1-th branch of the Lambert-W

λb(t) = −2 −W−1 (−2−2t
e2
) .

Still, it remains logarithmic in order

Proposition

We have log (1
1−t
) ≤ λb(t) ≤ b log (1

1−t
) for all t. Moreover

λb(t) ∼ log (1
1−t
) as t→ 1− and λb(t) ∼ b log (1

1−t
) as t→ 0+.

▸ Cost of a successful search is related to λb(t)/b.
▸ Effect is not simply dividing the search time by b !

13 / 27

The hops function λb(t)

▸ The case b = 1 : λ1(t) = log(1
1−t). Successful search time

coincides with the classical 1
t log(

1
1−t).

▸ The case b = 2 : using the −1-th branch of the Lambert-W

λb(t) = −2 −W−1 (−2−2t
e2
) .

Still, it remains logarithmic in order

Proposition

We have log (1
1−t
) ≤ λb(t) ≤ b log (1

1−t
) for all t. Moreover

λb(t) ∼ log (1
1−t
) as t→ 1− and λb(t) ∼ b log (1

1−t
) as t→ 0+.

▸ Cost of a successful search is related to λb(t)/b.
▸ Effect is not simply dividing the search time by b !

13 / 27

Plan of the talk

1. Introduction

2. Model and first results: successful search

3. Elements of the proof: techniques

4. Model and result for unsuccessful search

5. Conclusions and further work

A probabilistic recurrence: simulating occupancy

Let Uj(k) : # buckets with j occupied slots after k insertions.

Given the situation at time k, which we call Fk,

Uj(k + 1) −Uj(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+1, with probability
Uj−1(k)
n−Ub(k)

if j > 0 ,
−1, with probability

Uj(k)
n−Ub(k)

if j < b ,
0, otherwise.

We have the conditional expectation

E[Uj(k + 1) −Uj(k) ∣ Fk] = 1j>0
Uj−1(k)

n

1 − Ub(k)
n

− 1j<b
Uj(k)

n

1 − Ub(k)
n

.

14 / 27

A probabilistic recurrence: simulating occupancy

Let Uj(k) : # buckets with j occupied slots after k insertions.

Given the situation at time k, which we call Fk,

Uj(k + 1) −Uj(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+1, with probability
Uj−1(k)
n−Ub(k)

if j > 0 ,
−1, with probability

Uj(k)
n−Ub(k)

if j < b ,
0, otherwise.

We have the conditional expectation

E[Uj(k + 1) −Uj(k) ∣ Fk] = 1j>0
Uj−1(k)

n

1 − Ub(k)
n

− 1j<b
Uj(k)

n

1 − Ub(k)
n

.

14 / 27

Wormald’s Differential Equation Method

▸ Method introduced to study dynamics on graphs.

▸ System of equations for conditional expectations

E[Yj(k + 1) − Yj(k) ∣ Fk] = fj(k/N ;Y1(k)/N, . . . , Yℓ(k)/N) ,

j = 1, . . . , ℓ.
▸ If ∣Yj(k + 1) −Yj(k)∣ is “small” and functions fj are “regular”:

Yj(k) ≈ Nyj(k/N) ,

with probability tending to one, where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y′1(t) = f1(t; y1(t), . . . , yℓ(t)) ,
⋮

y′ℓ(t) = fℓ(t; y1(t), . . . , yℓ(t)) .

15 / 27

Wormald’s Differential Equation Method

▸ Method introduced to study dynamics on graphs.

▸ System of equations for conditional expectations

E[Yj(k + 1) − Yj(k) ∣ Fk] = fj(k/N ;Y1(k)/N, . . . , Yℓ(k)/N) ,

j = 1, . . . , ℓ.

▸ If ∣Yj(k + 1) −Yj(k)∣ is “small” and functions fj are “regular”:

Yj(k) ≈ Nyj(k/N) ,

with probability tending to one, where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y′1(t) = f1(t; y1(t), . . . , yℓ(t)) ,
⋮

y′ℓ(t) = fℓ(t; y1(t), . . . , yℓ(t)) .

15 / 27

Wormald’s Differential Equation Method

▸ Method introduced to study dynamics on graphs.

▸ System of equations for conditional expectations

E[Yj(k + 1) − Yj(k) ∣ Fk] = fj(k/N ;Y1(k)/N, . . . , Yℓ(k)/N) ,

j = 1, . . . , ℓ.
▸ If ∣Yj(k + 1) −Yj(k)∣ is “small” and functions fj are “regular”:

Yj(k) ≈ Nyj(k/N) ,

with probability tending to one, where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y′1(t) = f1(t; y1(t), . . . , yℓ(t)) ,
⋮

y′ℓ(t) = fℓ(t; y1(t), . . . , yℓ(t)) .

15 / 27

Wormald’s Differential Equation Method 2

Theorem (version adapted from Warnke’19)

Consider β = β(N), γ ∶= γ(N) → 0, λ ∶= λ(N) → 0,

1. for all k < N and j ∈ [ℓ],
Pr(∣Yj(k + 1) − Yj(k)∣ ≤ β(N)) ≥ 1 − γ(N) ;

2. for all j ∈ [ℓ], and k < N,
E[Yj(k + 1) − Yj(k) ∣ Fk] = fj(k/N ;Y1(k)/N, . . . , Yℓ(k)/N) ,
where the functions fj are L-Lipschitz on a domain D.

3. The initial Y (0) = (Y1(0), . . . , Yℓ(0)) satisfies
∥Y (0) −Nv∥∞ ≤ λ ⋅N for (0, v1, . . . , vℓ) ∈ D.

– Let y(t) = (y1(t), . . . , yℓ(t)) be the solution to the system of
differential equations with y1(0) = v1, . . . , yℓ(0) = vℓ.
– Let θ > 0 be such that (s,y(s)) ∈ D for all s ∈ [0, θ].
For λ(N) = Ω(1/N), with proba ≥ 1 − θℓNγ − 2b exp(−Nλ2/(8θβ2)),

∣Yj(k) −Nyj(k/N)∣ ≤ 3eLθλ(N) ⋅N = o(N),

for all j ∈ [ℓ] and k ≤ θN .
16 / 27

Wormald’s Differential Equation Method 3

Conclusion of the Theorem

For λ(N) = Ω(1/N), with proba ≥ 1 − θℓNγ − 2b exp(−Nλ2/(8θβ2)),

∣Yj(k) −Nyj(k/N)∣ ≤ 3eLθλ(N) ⋅N = o(N)

for all j ∈ [ℓ] and k ≤ θN .

To apply the result, we require

▸ β(N) can tend to infinity, but not too fast,

▸ γ(N) should tend to 0 with Nγ(N) → 0,

▸ λ(N) → 0 but not too fast.

– For the case of Uj(k) we simply have β(N) = 1 and λ(N) can
be any function such that Nλ2(N) → ∞.

– For the case of R(k), we can prove R(k + 1) −R(k) > (logN)2
with proba O(e−(1−θ)×(logN)2).

17 / 27

Wormald’s Differential Equation Method 3

Conclusion of the Theorem

For λ(N) = Ω(1/N), with proba ≥ 1 − θℓNγ − 2b exp(−Nλ2/(8θβ2)),

∣Yj(k) −Nyj(k/N)∣ ≤ 3eLθλ(N) ⋅N = o(N)

for all j ∈ [ℓ] and k ≤ θN .

To apply the result, we require

▸ β(N) can tend to infinity, but not too fast,

▸ γ(N) should tend to 0 with Nγ(N) → 0,

▸ λ(N) → 0 but not too fast.

– For the case of Uj(k) we simply have β(N) = 1 and λ(N) can
be any function such that Nλ2(N) → ∞.

– For the case of R(k), we can prove R(k + 1) −R(k) > (logN)2
with proba O(e−(1−θ)×(logN)2).

17 / 27

Wormald’s Differential Equation Method 3

Conclusion of the Theorem

For λ(N) = Ω(1/N), with proba ≥ 1 − θℓNγ − 2b exp(−Nλ2/(8θβ2)),

∣Yj(k) −Nyj(k/N)∣ ≤ 3eLθλ(N) ⋅N = o(N)

for all j ∈ [ℓ] and k ≤ θN .

To apply the result, we require

▸ β(N) can tend to infinity, but not too fast,

▸ γ(N) should tend to 0 with Nγ(N) → 0,

▸ λ(N) → 0 but not too fast.

– For the case of Uj(k) we simply have β(N) = 1 and λ(N) can
be any function such that Nλ2(N) → ∞.

– For the case of R(k), we can prove R(k + 1) −R(k) > (logN)2
with proba O(e−(1−θ)×(logN)2).

17 / 27

Wormald’s Differential Equation Method 4

– In the case of Uj(k) we obtain the system:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u′0(t) = −b
u0(t)

1−ub(t)
,

u′i(t) = b ui−1(t)
1−ub(t)

− b ui(t)
1−ub(t)

, for i ∈ {1, . . . , b − 1},
u′b(t) = b ub−1(t)

1−ub(t)
.

This system appears, from a different process in the work of Wormald.

– For R(k) the expected value is

E[R(k+1)−R(k)∣Fk] = ∑
r≥1

r(1−Ub(k)/n)(Ub(k)/n)r−1 =
1

1 − Ub(k)/n

which relates to λb(t) through λb(t) = b ∫ t
0

dt
1−ub(t)

.

18 / 27

Wormald’s Differential Equation Method 4

– In the case of Uj(k) we obtain the system:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u′0(t) = −b
u0(t)

1−ub(t)
,

u′i(t) = b ui−1(t)
1−ub(t)

− b ui(t)
1−ub(t)

, for i ∈ {1, . . . , b − 1},
u′b(t) = b ub−1(t)

1−ub(t)
.

This system appears, from a different process in the work of Wormald.

– For R(k) the expected value is

E[R(k+1)−R(k)∣Fk] = ∑
r≥1

r(1−Ub(k)/n)(Ub(k)/n)r−1 =
1

1 − Ub(k)/n

which relates to λb(t) through λb(t) = b ∫ t
0

dt
1−ub(t)

.

18 / 27

Wormald’s Differential Equation Method 4

– In the case of Uj(k) we obtain the system:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u′0(t) = −b
u0(t)

1−ub(t)
,

u′i(t) = b ui−1(t)
1−ub(t)

− b ui(t)
1−ub(t)

, for i ∈ {1, . . . , b − 1},
u′b(t) = b ub−1(t)

1−ub(t)
.

This system appears, from a different process in the work of Wormald.

– For R(k) the expected value is

E[R(k+1)−R(k)∣Fk] = ∑
r≥1

r(1−Ub(k)/n)(Ub(k)/n)r−1 =
1

1 − Ub(k)/n

which relates to λb(t) through λb(t) = b ∫ t
0

dt
1−ub(t)

.

18 / 27

Intuition behind the Differential Equation Method

Why such a strong concentration?1

▸ Underlying martingale:
Zi(k) ∶= ∑a<k(Yi(a + 1) − Yi(a) − fi(Y1(a)/N, . . . , Yℓ(a)/N)),
with E[Zi(k)] = 0.

▸ Maximal Azuma-Hoeffding Theorem implies Zi(k) ≈ 0 with high
probability.

▸ Convenient rewriting

Yi(k)−Nyi(k/N) = Zi(k)+∑
a<k
(fi(Y1(a)

N
, . . . , Yℓ(a)

N
)−N(yi(a+1N

)−yi(a
N
)) ,

helps prove bound high probability bound by recurrence.

1This is the proof from Warnke’19.
19 / 27

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:

▸ we search for a key not in the table,

▸ probe sequence made of random numbers {0, . . . , n − 1},

When to stop?

▸ as there are no deletions, we may stop if bucket is not full,

▸ boost::unordered flat map uses overflow bits.

Overflow bits

▸ when no space to insert key, leave a “continue mark”,

▸ use d bits, the overflow bit is a hash value in {0, . . . , d − 1},
▸ this allows us to stop a search prematurely,

▸ more meta-data per bucket.

⇒ During insertion, we consider a fresh uniform and independent
overflow bit each time needed.

20 / 27

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:

▸ we search for a key not in the table,

▸ probe sequence made of random numbers {0, . . . , n − 1},

When to stop?

▸ as there are no deletions, we may stop if bucket is not full,

▸ boost::unordered flat map uses overflow bits.

Overflow bits

▸ when no space to insert key, leave a “continue mark”,

▸ use d bits, the overflow bit is a hash value in {0, . . . , d − 1},
▸ this allows us to stop a search prematurely,

▸ more meta-data per bucket.

⇒ During insertion, we consider a fresh uniform and independent
overflow bit each time needed.

20 / 27

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:

▸ we search for a key not in the table,

▸ probe sequence made of random numbers {0, . . . , n − 1},

When to stop?

▸ as there are no deletions, we may stop if bucket is not full,

▸ boost::unordered flat map uses overflow bits.

Overflow bits

▸ when no space to insert key, leave a “continue mark”,

▸ use d bits, the overflow bit is a hash value in {0, . . . , d − 1},
▸ this allows us to stop a search prematurely,

▸ more meta-data per bucket.

⇒ During insertion, we consider a fresh uniform and independent
overflow bit each time needed.

20 / 27

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:

▸ we search for a key not in the table,

▸ probe sequence made of random numbers {0, . . . , n − 1},

When to stop?

▸ as there are no deletions, we may stop if bucket is not full,

▸ boost::unordered flat map uses overflow bits.

Overflow bits

▸ when no space to insert key, leave a “continue mark”,

▸ use d bits, the overflow bit is a hash value in {0, . . . , d − 1},
▸ this allows us to stop a search prematurely,

▸ more meta-data per bucket.

⇒ During insertion, we consider a fresh uniform and independent
overflow bit each time needed.

20 / 27

Model for unsuccessful search

In our model

▸ each overflow bit is a fresh random number in {0, . . . , d − 1},
▸ if several are needed, they are independent.

Let Vj(k) be the number of full buckets with j overflow bits on:

▸ Number of hops in unsuccessful search is geometric, parameter

p =
d

∑
j=0

Vj(k)
n
× j

d
.

▸ The expected number of hops is 1
1−p .

We study Vj(k) for j = 0, . . . , d. Observe ∑j Vj(k) = Ub(k).

21 / 27

Model for unsuccessful search

In our model

▸ each overflow bit is a fresh random number in {0, . . . , d − 1},
▸ if several are needed, they are independent.

Let Vj(k) be the number of full buckets with j overflow bits on:

▸ Number of hops in unsuccessful search is geometric, parameter

p =
d

∑
j=0

Vj(k)
n
× j

d
.

▸ The expected number of hops is 1
1−p .

We study Vj(k) for j = 0, . . . , d. Observe ∑j Vj(k) = Ub(k).

21 / 27

Model for unsuccessful search

In our model

▸ each overflow bit is a fresh random number in {0, . . . , d − 1},
▸ if several are needed, they are independent.

Let Vj(k) be the number of full buckets with j overflow bits on:

▸ Number of hops in unsuccessful search is geometric, parameter

p =
d

∑
j=0

Vj(k)
n
× j

d
.

▸ The expected number of hops is 1
1−p .

We study Vj(k) for j = 0, . . . , d. Observe ∑j Vj(k) = Ub(k).

21 / 27

Main result for unsuccessful search

Theorem (Nicaud, R., 26+)

Starting from an empty table with n buckets of size b, and d
overflow bits, the number of full buckets with j overflow bits on at
time k, Vj(k), satisfiesa Vj(k) = nvj(k/N) + o(n) with probability
tending to one, for all k ≤ θN , where

vj(t) = (
d

j
)e−(d−j)λb(t)/d∫

λb(t)

0

xb−1
(b−1)!(e

−x/d − e−λb(t)/d)jdx .

ao term is uniform in k and j.

Corollary

The expected cost of an unsuccessful search is

(1 − ∫
λb(k/N)

0

xb−1
(b−1)!e

−(1−1/d)x(e−x/d − e−λb(k/N)/d)dx)
−1

+ o(1) ,

with probability tending to one.

22 / 27

Main result for unsuccessful search

Theorem (Nicaud, R., 26+)

Starting from an empty table with n buckets of size b, and d
overflow bits, the number of full buckets with j overflow bits on at
time k, Vj(k), satisfiesa Vj(k) = nvj(k/N) + o(n) with probability
tending to one, for all k ≤ θN , where

vj(t) = (
d

j
)e−(d−j)λb(t)/d∫

λb(t)

0

xb−1
(b−1)!(e

−x/d − e−λb(t)/d)jdx .

ao term is uniform in k and j.

Corollary

The expected cost of an unsuccessful search is

(1 − ∫
λb(k/N)

0

xb−1
(b−1)!e

−(1−1/d)x(e−x/d − e−λb(k/N)/d)dx)
−1

+ o(1) ,

with probability tending to one.
22 / 27

Expected cost of unsuccessful search

Plot of a single run with n = 214 = 16 384, b = 15, d = 8

40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

0

5 ⋅ 10−2

0.1

0.15

Proportion of table occupancy

E
xp

ec
te
d
ex
tr
a
h
op

s
in

u
n
su
cc
es
sf
u
l
se
ar
ch

Predicted
Experiment

23 / 27

The case b = 1

Overflow bits can be used even when buckets are of size b = 1:

▸ The idea for b = d = 1 appears in Amble and Knuth. Ordered
hash tables. from 1974.

▸ When b = 1 we have λb(t) = log(1
1−t).

▸ The unsuccessful search times are

1

1 − t×
1

1 + (1−t)
−(1−1/d)

−1
1−1/d

, (d > 1) , 1

1 − t×
1

1 + log(1
1−t)

, (d = 1) ,

compared to 1
1−t without overflow bits.

24 / 27

Elements of the study of Vj(k)

– Change the notion of time:

▸ instead of k insertions consider r hops,

▸ k insertions corresponds to r = R(k) hops.

– In the time-scale of hops

E[Ṽj(r + 1) − Ṽj(r) ∣ F̃r] = (1 − j−1
d)Ṽj−1(r) − (1 − j

d)Ṽj(r) ,

for j > 0, and E[Ṽ0(r + 1) − Ṽ0(r) ∣ F̃r] = Ũb−1(r) − Ṽ0(r).

– We use the Differential Equation Method, and then

R(k) = N
b λb(k/N) + o(n) ,

to link both time-scales as Vj(k) = Ṽj(R(k)).

25 / 27

Elements of the study of Vj(k)

– Change the notion of time:

▸ instead of k insertions consider r hops,

▸ k insertions corresponds to r = R(k) hops.

– In the time-scale of hops

E[Ṽj(r + 1) − Ṽj(r) ∣ F̃r] = (1 − j−1
d)Ṽj−1(r) − (1 − j

d)Ṽj(r) ,

for j > 0, and E[Ṽ0(r + 1) − Ṽ0(r) ∣ F̃r] = Ũb−1(r) − Ṽ0(r).

– We use the Differential Equation Method, and then

R(k) = N
b λb(k/N) + o(n) ,

to link both time-scales as Vj(k) = Ṽj(R(k)).

25 / 27

Elements of the study of Vj(k)

– Change the notion of time:

▸ instead of k insertions consider r hops,

▸ k insertions corresponds to r = R(k) hops.

– In the time-scale of hops

E[Ṽj(r + 1) − Ṽj(r) ∣ F̃r] = (1 − j−1
d)Ṽj−1(r) − (1 − j

d)Ṽj(r) ,

for j > 0, and E[Ṽ0(r + 1) − Ṽ0(r) ∣ F̃r] = Ũb−1(r) − Ṽ0(r).

– We use the Differential Equation Method, and then

R(k) = N
b λb(k/N) + o(n) ,

to link both time-scales as Vj(k) = Ṽj(R(k)).

25 / 27

Different combinations of b and d

40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

0

0.2

0.4

0.6

0.8

1

Proportion of table occupancy

E
xt
ra

h
op

s
(e
xp

ec
te
d
)

Suc. (16,–)

Uns. (16,–)

Suc. (15,8)

Uns. (15,8)

Suc. (14,16)

Uns. (14,16)

How to make sense of the difference ?

▸ number of bytes per bucket is the same in all three,

▸ here we talk about % of full, but capacities are different !

▸ compare when the number of inserted elements is the same ?

26 / 27

Different combinations of b and d

40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

0

0.2

0.4

0.6

0.8

1

Proportion of table occupancy

E
xt
ra

h
op

s
(e
xp

ec
te
d
)

Suc. (16,–)

Uns. (16,–)

Suc. (15,8)

Uns. (15,8)

Suc. (14,16)

Uns. (14,16)

How to make sense of the difference ?

▸ number of bytes per bucket is the same in all three,

▸ here we talk about % of full, but capacities are different !

▸ compare when the number of inserted elements is the same ?
26 / 27

Recap and conclusions

⊛ The current implementation in boost is more complex
buckets are not separated, they overlap.

⊛ Other models of pass-bits exist

▸ same bit used every time we leave a mark2,
▸ a counter of “passing” keys instead [F14 of Meta].

⊛ Model with suppression?

⇒ Ui,j(k) =# i elements and j on bits.

Conclusions

⊛ We have shown how techniques from graphs dynamics can be
applied to hash tables.

⊛ Results are very precise and hold with high probability.

⊛ Introduction of SIMD and buckets of b leads to non-trivial behaviors.

2P M Martini and W A Burkhard. Double hashing with multiple passbits.
IJCS, 14(06):1165–1182, 2003.

27 / 27

Recap and conclusions

⊛ The current implementation in boost is more complex
buckets are not separated, they overlap.

⊛ Other models of pass-bits exist

▸ same bit used every time we leave a mark2,
▸ a counter of “passing” keys instead [F14 of Meta].

⊛ Model with suppression? ⇒ Ui,j(k) =# i elements and j on bits.

Conclusions

⊛ We have shown how techniques from graphs dynamics can be
applied to hash tables.

⊛ Results are very precise and hold with high probability.

⊛ Introduction of SIMD and buckets of b leads to non-trivial behaviors.

2P M Martini and W A Burkhard. Double hashing with multiple passbits.
IJCS, 14(06):1165–1182, 2003.

27 / 27

Recap and conclusions

⊛ The current implementation in boost is more complex
buckets are not separated, they overlap.

⊛ Other models of pass-bits exist

▸ same bit used every time we leave a mark2,
▸ a counter of “passing” keys instead [F14 of Meta].

⊛ Model with suppression? ⇒ Ui,j(k) =# i elements and j on bits.

Conclusions

⊛ We have shown how techniques from graphs dynamics can be
applied to hash tables.

⊛ Results are very precise and hold with high probability.

⊛ Introduction of SIMD and buckets of b leads to non-trivial behaviors.

2P M Martini and W A Burkhard. Double hashing with multiple passbits.
IJCS, 14(06):1165–1182, 2003.

27 / 27

Thank you!

	Introduction
	Model and first results: successful search
	Elements of the proof: techniques
	Model and result for unsuccessful search
	Conclusions and further work

