

SIMD instructions in Hashtables

Pablo Rotondo

LIGM, Université Gustave Eiffel

Joint work with
Cyril Nicaud (LIGM)

Séminaire LIGM,
Champs-Sur-Marne, 27 January, 2026.

Introduction

- ▶ Aim: study and model actual implementations
 - Engineers sometimes choose innovative implementations
e.g., `TimSort` in Python.
 - Study choices in depth, make recommendations.

Introduction

- ▶ Aim: study and model actual implementations
 - Engineers sometimes choose innovative implementations
e.g., TimSort in Python.
 - Study choices in depth, make recommendations.
- ▶ Why not use textbook solutions?
 - typical usage of data structures,
 - architectural features of modern computers.

Introduction

- ▶ Aim: study and model actual implementations
 - Engineers sometimes choose innovative implementations
e.g., TimSort in Python.
 - Study choices in depth, make recommendations.

- ▶ Why not use textbook solutions?

- typical usage of data structures,
 - architectural features of modern computers.

⇒ This talk: SIMD instructions (Single Instruction, Multiple Data) in modern HashTables.

A crash course in HashTables

Motivation

Implement an associative array m :

- universe \mathcal{U} of keys $k \in \mathcal{U}$ enormous,
- associate some keys k to values $m[k]$,
- insert, search, delete...

A crash course in HashTables

Motivation

Implement an associative array m :

- universe \mathcal{U} of keys $k \in \mathcal{U}$ enormous,
- associate some keys k to values $m[k]$,
- insert, search, delete...

Hashtables:

- ▶ **Idea** : use a small array A , of size $n \ll |\mathcal{U}|$
 - consider $h : \mathcal{U} \rightarrow \mathbb{Z}$ *pseudo-random*,
 - insert k in bucket $A[i]$ where $i = h(k) \bmod n$.
- ▶ **Problem** : collisions, keys k_1 and k_2 with $h(k_1) = h(k_2)$.

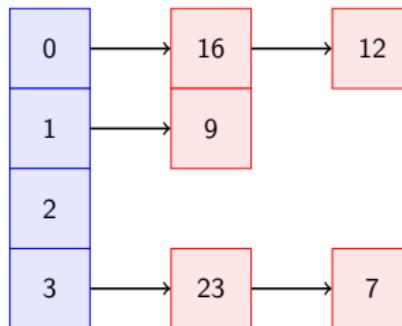
A crash course in HashTables 2

- ▶ **Collision resolution policy :**
 1. [External Hashing / Closed addressing] Each bucket $A[i]$ contains a linked list.
 2. [Internal Hashing / Open addressing] If bucket is occupied, find another that is free.

A crash course in HashTables 2

- ▶ **Collision resolution policy :**

1. [External Hashing / Closed addressing] Each bucket $A[i]$ contains a linked list.

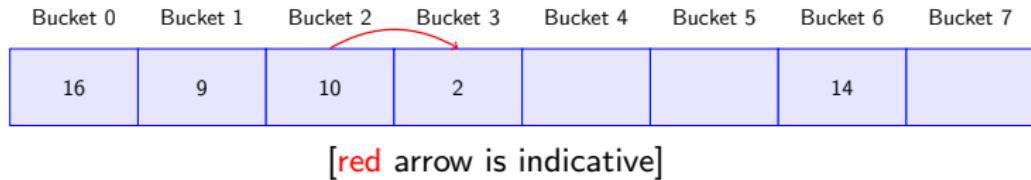


2. [Internal Hashing / Open addressing] If bucket is occupied, find another that is free.

A crash course in HashTables 2

- ▶ **Collision resolution policy :**

1. [External Hashing / Closed addressing] Each bucket $A[i]$ contains a linked list.
2. [Internal Hashing / Open addressing] If bucket is occupied, find another that is free.



A crash course in HashTables 2

- ▶ **Collision resolution policy :**

1. [External Hashing / Closed addressing] Each bucket $A[i]$ contains a linked list.
2. [Internal Hashing / Open addressing] If bucket is occupied, find another that is free.

- ▶ **Rehashing policy:**

- if *load factor* $\frac{\# \text{keys}}{n}$ is “big” ($> \theta \in (0, 1)$), create larger array,
- must reinsert everything. [slow! but amortized overall]

Internal hashing / Open addressing

- ▶ Internal hashing / Open addressing more popular when looking for performance (better locality).
- ▶ Many strategies to define the *probe sequence*.

Internal hashing / Open addressing

- ▶ Internal hashing / Open addressing more popular when looking for performance (better locality).
- ▶ Many strategies to define the *probe sequence*.

Probing sequence

To search/insert x :

- Start at $i_0 = h(x) \bmod n$.
- If occupied, test i_1, i_2, \dots etc. in order.

Internal hashing / Open addressing

- ▶ Internal hashing / Open addressing more popular when looking for performance (better locality).
- ▶ Many strategies to define the *probe sequence*.

Probing sequence

To search/insert x :

- Start at $i_0 = h(x) \bmod n$.
- If occupied, test i_1, i_2, \dots etc. in order.

Modulo n ,

- ▶ **Linear probing:** $i_1 = i_0 + 1, i_2 = i_1 + 1, \dots$
- ▶ **Quadratic probing:** $i_1 = i_0 + 1, i_2 = i_1 + 2, \dots, i_j = i_{j-1} + j, \dots$
- ▶ **Double hashing:** $\Delta(x) = h_2(x), i_1 = i_0 + \Delta, i_2 = i_1 + \Delta, \dots$

Internal hashing / Open addressing

- ▶ Internal hashing / Open addressing more popular when looking for performance (better locality).
- ▶ Many strategies to define the *probe sequence*.

Probing sequence

To search/insert x :

- Start at $i_0 = h(x) \bmod n$.
- If occupied, test i_1, i_2, \dots etc. in order.

Modulo n ,

- ▶ **Linear probing:** $i_1 = i_0 + 1, i_2 = i_1 + 1, \dots$
- ▶ **Quadratic probing:** $i_1 = i_0 + 1, i_2 = i_1 + 2, \dots, i_j = i_{j-1} + j, \dots$
- ▶ **Double hashing:** $\Delta(x) = h_2(x), i_1 = i_0 + \Delta, i_2 = i_1 + \Delta, \dots$

Theoretical model: random probing model, each i_j is taken uniformly and independently from $\{0, \dots, n-1\}$.

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

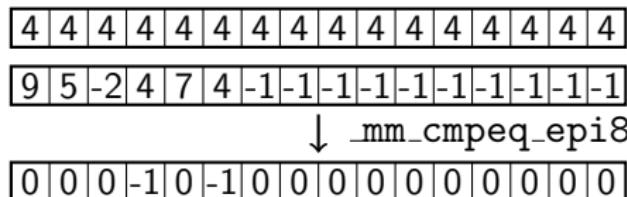
Example: comparing vectors of 128 bits with 16 lanes of 1 byte

4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
9	5	-2	4	7	4	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
↓ mm_cmpeq_epi8															
0	0	0	-1	0	-1	0	0	0	0	0	0	0	0	0	0

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

Example: comparing vectors of 128 bits with 16 lanes of 1 byte



Idea: buckets of b keys, keep header of metadata for each bucket

- ▶ reduced hash value (usually one byte) for each key
- ▶ when searching/inserting, compare reduced hash first

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

Example: comparing vectors of 128 bits with 16 lanes of 1 byte

4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
9	5	-2	4	7	4	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
↓ mm_cmpeq_epi8															
0	0	0	-1	0	-1	0	0	0	0	0	0	0	0	0	0

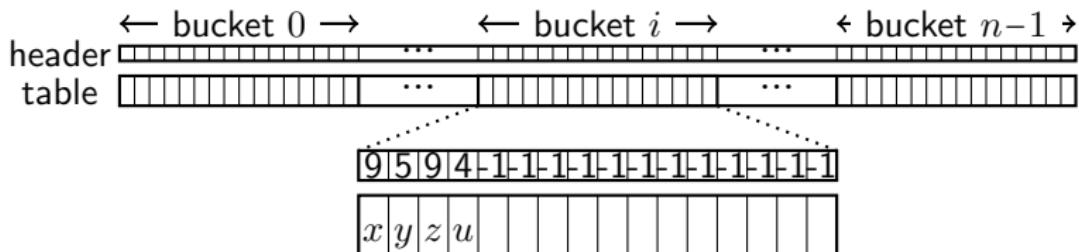
Idea: buckets of b keys, keep header of metadata for each bucket

- ▶ reduced hash value (usually one byte) for each key
- ▶ when searching/inserting, compare reduced hash first

Principle of several modern hashtables:

`boost::unordered_flat_map` ($b = 15$), Google Abseil Swiss tables
($b = 16$), F14 of Meta ($b = 14$)...

Using vectorization in hash tables 2



We consider the *fingerprint byte*

- ▶ to be $255 \equiv -1$ when the position is free,
- ▶ to be $254 \equiv -2$ when the position was deleted, [tombstone]
- ▶ else we have a reduced *hash value*.

Our model: parameters

We are interested in *hops* : [accesses to buckets]

- ▶ number of buckets accessed for a successful search,
- ▶ proportion of full buckets.

Our model: parameters

We are interested in *hops* : [accesses to buckets]

- ▶ number of buckets accessed for a successful search,
- ▶ proportion of full buckets.

Insert k distinct elements into a table with n buckets:

- ▶ probe sequence made of random numbers $\{0, \dots, n-1\}$.
- ▶ for the moment we do not consider deletions,

Later in talk: **unsuccessful search**.

Main results: proportion of occupancy

We are interested in *hops* :

- ▶ number of buckets accessed for a successful search,
- ▶ **proportion of full buckets.**

Main results: proportion of occupancy

We are interested in *hops* :

- ▶ number of buckets accessed for a successful search,
- ▶ **proportion of full buckets.**

Let $U_j(k) : \# \text{ buckets with } j \text{ occupied slots after } k \text{ insertions,}$

Theorem [Nicaud, R, 26+]: proportion of occupancy

Suppose $k \leq \theta \cdot N$ for $\theta \in (0, 1)$, $N := b \times n$ the maximum capacity.

With probability tending to one, we have uniformly

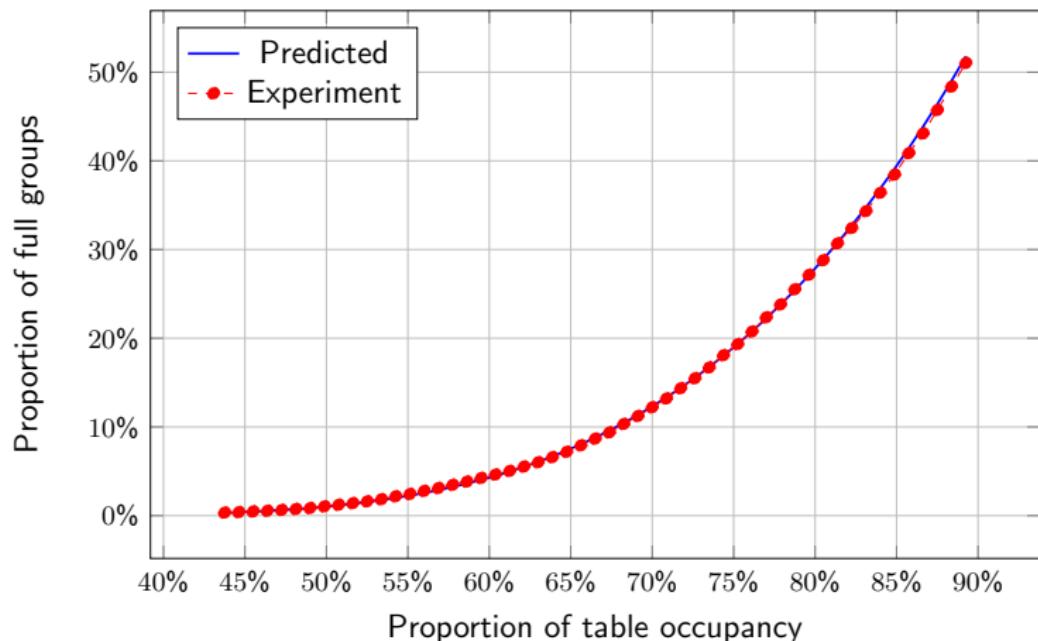
$$U_j(k) = n u_j(k/N) + o(n),$$

where $u_j(t) = \frac{\lambda(t)^j}{j!} e^{-\lambda(t)}$ for $j = 0, \dots, b-1$, $u_b(t) = 1 - \sum_{j < b} u_j(t)$ and $\lambda(t) = \lambda_b(t)$ is a special function we can compute^a.

^aNote that $S(k) := \sum j U_j(k)$ increases always by 1, so $\sum j u_j(k) = bt$.

Proportion of occupancy

Plot of a *single* run with $n = 2^{14} = 16\ 384$, $b = 15$,



Stopped at $\theta = 0.875$, maximum load of `boost::unordered_flat_map`.

Main results: number of hops

The special function $\lambda(t)$ is associated to hops.

Let $R(k)$: be the total number of hops up the the k -th insertion,

Main results: number of hops

The special function $\lambda(t)$ is associated to hops.

Let $R(k)$: be the total number of hops up the the k -th insertion,

Theorem [Nicaud, R, 26+]: number of hops

Suppose $k \leq \theta \cdot N$ for $\theta \in (0, 1)$, $N := b \times n$ the maximum capacity.

With probability tending to one,

$$R(k) = n\lambda_b(k/N) + o(n),$$

$\lambda_b(t)$ is defined implicitly by

$$e^{-\lambda_b(t)} \sum_{i < b} (b - i) \frac{1}{i!} \lambda_b(t)^i = b - bt.$$

Successful search

We consider the usual model for **successful search**:

- ▶ Pick an element uniformly at random from the k present.
- ▶ Classical model, others are possible.

Successful search

We consider the usual model for **successful search**:

- ▶ Pick an element **uniformly at random** from the k **present**.
- ▶ **Classical model**, others are possible.

Corollary (Successful search)

With high probability, the average successful search time is $\lambda_b(t)/(bt) + o(1)$, where $t = k/N$.

Successful search

We consider the usual model for **successful search**:

- ▶ Pick an element uniformly at random from the k present.
- ▶ Classical model, others are possible.

Corollary (Successful search)

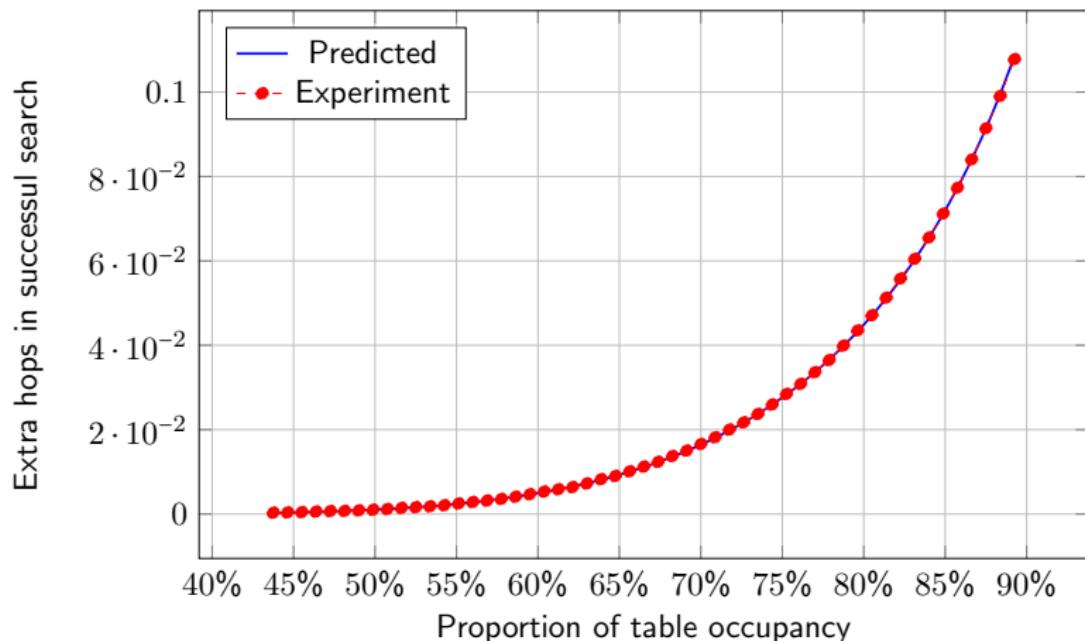
With high probability, the average successful search time is $\lambda_b(t)/(bt) + o(1)$, where $t = k/N$.

Proof.

The successful search time is $R(k)/k$. □

Successful search

Plot of a *single* run with $n = 2^{14} = 16\ 384$, $b = 15$,



Stopped at $\theta = 0.875$, maximum load of `boost::unordered_flat_map`.

The hops function $\lambda_b(t)$

- ▶ The case $b = 1$: $\lambda_1(t) = \log(\frac{1}{1-t})$. Successful search time coincides with the classical $\frac{1}{t} \log(\frac{1}{1-t})$.
- ▶ The case $b = 2$: using the -1 -th branch of the Lambert-W

$$\lambda_b(t) = -2 - W_{-1}\left(-\frac{2-2t}{e^2}\right).$$

The hops function $\lambda_b(t)$

- ▶ The case $b = 1$: $\lambda_1(t) = \log\left(\frac{1}{1-t}\right)$. Successful search time coincides with the classical $\frac{1}{t} \log\left(\frac{1}{1-t}\right)$.
- ▶ The case $b = 2$: using the -1 -th branch of the Lambert-W

$$\lambda_b(t) = -2 - W_{-1}\left(-\frac{2-2t}{e^2}\right).$$

Still, it remains logarithmic in order

Proposition

We have $\log\left(\frac{1}{1-t}\right) \leq \lambda_b(t) \leq b \log\left(\frac{1}{1-t}\right)$ for all t . Moreover $\lambda_b(t) \sim \log\left(\frac{1}{1-t}\right)$ as $t \rightarrow 1^-$ and $\lambda_b(t) \sim b \log\left(\frac{1}{1-t}\right)$ as $t \rightarrow 0^+$.

The hops function $\lambda_b(t)$

- ▶ The case $b = 1$: $\lambda_1(t) = \log(\frac{1}{1-t})$. Successful search time coincides with the classical $\frac{1}{t} \log(\frac{1}{1-t})$.
- ▶ The case $b = 2$: using the -1 -th branch of the Lambert-W

$$\lambda_b(t) = -2 - W_{-1}\left(-\frac{2-2t}{e^2}\right).$$

Still, it remains logarithmic in order

Proposition

We have $\log\left(\frac{1}{1-t}\right) \leq \lambda_b(t) \leq b \log\left(\frac{1}{1-t}\right)$ for all t . Moreover $\lambda_b(t) \sim \log\left(\frac{1}{1-t}\right)$ as $t \rightarrow 1^-$ and $\lambda_b(t) \sim b \log\left(\frac{1}{1-t}\right)$ as $t \rightarrow 0^+$.

- ▶ Cost of a successful search is related to $\lambda_b(t)/b$.
- ▶ Effect is not simply dividing the search time by b !

Plan of the talk

1. Introduction
2. Model and first results: successful search
3. Elements of the proof: techniques
4. Model and result for unsuccessful search
5. Conclusions and further work

A probabilistic recurrence: simulating occupancy

Let $U_j(k)$: # buckets with j occupied slots after k insertions.

Given the **situation at time k** , which we call \mathcal{F}_k ,

$$U_j(k+1) - U_j(k) = \begin{cases} +1, & \text{with probability } \frac{U_{j-1}(k)}{n-U_b(k)} \text{ if } j > 0, \\ -1, & \text{with probability } \frac{U_j(k)}{n-U_b(k)} \text{ if } j < b, \\ 0, & \text{otherwise.} \end{cases}$$

A probabilistic recurrence: simulating occupancy

Let $U_j(k)$: # buckets with j occupied slots after k insertions.

Given the **situation at time k** , which we call \mathcal{F}_k ,

$$U_j(k+1) - U_j(k) = \begin{cases} +1, & \text{with probability } \frac{U_{j-1}(k)}{n-U_b(k)} \text{ if } j > 0, \\ -1, & \text{with probability } \frac{U_j(k)}{n-U_b(k)} \text{ if } j < b, \\ 0, & \text{otherwise.} \end{cases}$$

We have the **conditional expectation**

$$\mathbb{E}[U_j(k+1) - U_j(k) \mid \mathcal{F}_k] = \mathbf{1}_{j>0} \frac{\frac{U_{j-1}(k)}{n}}{1 - \frac{U_b(k)}{n}} - \mathbf{1}_{j<b} \frac{\frac{U_j(k)}{n}}{1 - \frac{U_b(k)}{n}}.$$

Wormald's Differential Equation Method

- ▶ Method introduced to study dynamics on graphs.

Wormald's Differential Equation Method

- ▶ Method introduced to study dynamics on graphs.
- ▶ System of equations for conditional expectations

$$\mathbb{E}[Y_j(k+1) - Y_j(k) \mid \mathcal{F}_k] = f_j(k/N; Y_1(k)/N, \dots, Y_\ell(k)/N),$$

$$j = 1, \dots, \ell.$$

Wormald's Differential Equation Method

- ▶ Method introduced to study dynamics on graphs.
- ▶ System of equations for conditional expectations

$$\mathbb{E}[Y_j(k+1) - Y_j(k) \mid \mathcal{F}_k] = f_j(k/N; Y_1(k)/N, \dots, Y_\ell(k)/N),$$

$$j = 1, \dots, \ell.$$

- ▶ If $|Y_j(k+1) - Y_j(k)|$ is “small” and functions f_j are “regular”:

$$Y_j(k) \approx Ny_j(k/N),$$

with probability tending to one, where

$$\begin{cases} y'_1(t) &= f_1(t; y_1(t), \dots, y_\ell(t)), \\ &\vdots \\ y'_\ell(t) &= f_\ell(t; y_1(t), \dots, y_\ell(t)). \end{cases}$$

Wormald's Differential Equation Method 2

Theorem (version adapted from Warnke'19)

Consider $\beta = \beta(N)$, $\gamma := \gamma(N) \rightarrow 0$, $\lambda := \lambda(N) \rightarrow 0$,

1. for all $k < N$ and $j \in [\ell]$,
$$\Pr(|Y_j(k+1) - Y_j(k)| \leq \beta(N)) \geq 1 - \gamma(N);$$
2. for all $j \in [\ell]$, and $k < N$,
$$\mathbb{E}[Y_j(k+1) - Y_j(k) \mid \mathcal{F}_k] = f_j(k/N; Y_1(k)/N, \dots, Y_\ell(k)/N),$$
where the functions f_j are L -Lipschitz on a domain \mathcal{D} .
3. The initial $\mathbf{Y}(0) = (Y_1(0), \dots, Y_\ell(0))$ satisfies
$$\|\mathbf{Y}(0) - N\mathbf{v}\|_\infty \leq \lambda \cdot N$$
 for $(0, v_1, \dots, v_\ell) \in \mathcal{D}.$
 - Let $\mathbf{y}(t) = (y_1(t), \dots, y_\ell(t))$ be the solution to the system of differential equations with $y_1(0) = v_1, \dots, y_\ell(0) = v_\ell$.
 - Let $\theta > 0$ be such that $(s, \mathbf{y}(s)) \in \mathcal{D}$ for all $s \in [0, \theta]$.

For $\lambda(N) = \Omega(1/N)$, with proba $\geq 1 - \theta\ell N\gamma - 2b \exp(-N\lambda^2/(8\theta\beta^2))$,

$$|Y_j(k) - Ny_j(k/N)| \leq 3e^{L\theta} \lambda(N) \cdot N = o(N),$$

for all $j \in [\ell]$ and $k \leq \theta N$.

Wormald's Differential Equation Method 3

Conclusion of the Theorem

For $\lambda(N) = \Omega(1/N)$, with proba $\geq 1 - \theta\ell N\gamma - 2b \exp(-N\lambda^2/(8\theta\beta^2))$,

$$|Y_j(k) - Ny_j(k/N)| \leq 3e^{L\theta} \lambda(N) \cdot N = o(N)$$

for all $j \in [\ell]$ and $k \leq \theta N$.

To apply the result, we require

- ▶ $\beta(N)$ can tend to infinity, but not too fast,
- ▶ $\gamma(N)$ should tend to 0 with $N\gamma(N) \rightarrow 0$,
- ▶ $\lambda(N) \rightarrow 0$ but not too fast.

Wormald's Differential Equation Method 3

Conclusion of the Theorem

For $\lambda(N) = \Omega(1/N)$, with proba $\geq 1 - \theta\ell N\gamma - 2b \exp(-N\lambda^2/(8\theta\beta^2))$,

$$|Y_j(k) - Ny_j(k/N)| \leq 3e^{L\theta} \lambda(N) \cdot N = o(N)$$

for all $j \in [\ell]$ and $k \leq \theta N$.

To apply the result, we require

- ▶ $\beta(N)$ can tend to infinity, but not too fast,
- ▶ $\gamma(N)$ should tend to 0 with $N\gamma(N) \rightarrow 0$,
- ▶ $\lambda(N) \rightarrow 0$ but not too fast.

– For the case of $U_j(k)$ we simply have $\beta(N) = 1$ and $\lambda(N)$ can be any function such that $N\lambda^2(N) \rightarrow \infty$.

Wormald's Differential Equation Method 3

Conclusion of the Theorem

For $\lambda(N) = \Omega(1/N)$, with proba $\geq 1 - \theta\ell N\gamma - 2b \exp(-N\lambda^2/(8\theta\beta^2))$,

$$|Y_j(k) - Ny_j(k/N)| \leq 3e^{L\theta} \lambda(N) \cdot N = o(N)$$

for all $j \in [\ell]$ and $k \leq \theta N$.

To apply the result, we require

- ▶ $\beta(N)$ can tend to infinity, but not too fast,
- ▶ $\gamma(N)$ should tend to 0 with $N\gamma(N) \rightarrow 0$,
- ▶ $\lambda(N) \rightarrow 0$ but not too fast.

– For the case of $U_j(k)$ we simply have $\beta(N) = 1$ and $\lambda(N)$ can be any function such that $N\lambda^2(N) \rightarrow \infty$.

– For the case of $R(k)$, we can prove $R(k+1) - R(k) > (\log N)^2$ with proba $O(e^{-(1-\theta)\times(\log N)^2})$.

Wormald's Differential Equation Method 4

- In the case of $U_j(k)$ we obtain the system:

$$\begin{cases} u'_0(t) &= -b \frac{u_0(t)}{1-u_b(t)}, \\ u'_i(t) &= b \frac{u_{i-1}(t)}{1-u_b(t)} - b \frac{u_i(t)}{1-u_b(t)}, \text{ for } i \in \{1, \dots, b-1\}, \\ u'_b(t) &= b \frac{u_{b-1}(t)}{1-u_b(t)}. \end{cases}$$

Wormald's Differential Equation Method 4

- In the case of $U_j(k)$ we obtain the system:

$$\begin{cases} u'_0(t) &= -b \frac{u_0(t)}{1-u_b(t)}, \\ u'_i(t) &= b \frac{u_{i-1}(t)}{1-u_b(t)} - b \frac{u_i(t)}{1-u_b(t)}, \text{ for } i \in \{1, \dots, b-1\}, \\ u'_b(t) &= b \frac{u_{b-1}(t)}{1-u_b(t)}. \end{cases}$$

This system appears, from a different process in the work of Wormald.

Wormald's Differential Equation Method 4

- In the case of $U_j(k)$ we obtain the system:

$$\begin{cases} u'_0(t) &= -b \frac{u_0(t)}{1-u_b(t)}, \\ u'_i(t) &= b \frac{u_{i-1}(t)}{1-u_b(t)} - b \frac{u_i(t)}{1-u_b(t)}, \text{ for } i \in \{1, \dots, b-1\}, \\ u'_b(t) &= b \frac{u_{b-1}(t)}{1-u_b(t)}. \end{cases}$$

This system appears, from a different process in the work of Wormald.

- For $R(k)$ the expected value is

$$\mathbb{E}[R(k+1) - R(k) | \mathcal{F}_k] = \sum_{r \geq 1} r (1 - U_b(k)/n) (U_b(k)/n)^{r-1} = \frac{1}{1 - U_b(k)/n}$$

which relates to $\lambda_b(t)$ through $\lambda_b(t) = b \int_0^t \frac{dt}{1-u_b(t)}$.

Intuition behind the Differential Equation Method

Why such a strong concentration?¹

- ▶ Underlying **martingale**:

$Z_i(k) := \sum_{a < k} (Y_i(a+1) - Y_i(a)) - f_i(Y_1(a)/N, \dots, Y_\ell(a)/N)),$
with $\mathbb{E}[Z_i(k)] = 0$.

- ▶ **Maximal Azuma-Hoeffding Theorem** implies $Z_i(k) \approx 0$ with high probability.
- ▶ Convenient rewriting

$$Y_i(k) - Ny_i(k/N) = Z_i(k) + \sum_{a < k} (f_i\left(\frac{Y_1(a)}{N}, \dots, \frac{Y_\ell(a)}{N}\right) - N(y_i\left(\frac{a+1}{N}\right) - y_i\left(\frac{a}{N}\right))),$$

helps prove bound high probability bound by recurrence.

¹This is the proof from Warnke'19.

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:

- ▶ we search for a key not in the table,
- ▶ probe sequence made of random numbers $\{0, \dots, n - 1\}$,

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:

- ▶ we search for a key not in the table,
- ▶ probe sequence made of random numbers $\{0, \dots, n - 1\}$,

When to stop?

- ▶ as there are no deletions, we may stop if bucket is not full,
- ▶ `boost::unordered_flat_map` uses *overflow bits*.

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:

- ▶ we search for a key not in the table,
- ▶ probe sequence made of random numbers $\{0, \dots, n - 1\}$,

When to stop?

- ▶ as there are no deletions, we may stop if bucket is not full,
- ▶ `boost::unordered_flat_map` uses *overflow bits*.

Overflow bits

- ▶ when no space to insert key, leave a “continue mark”,
- ▶ use d bits, the overflow bit is a *hash value* in $\{0, \dots, d - 1\}$,
- ▶ this allows us to stop a search prematurely,
- ▶ more *meta-data* per bucket.

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:

- ▶ we search for a key not in the table,
- ▶ probe sequence made of random numbers $\{0, \dots, n - 1\}$,

When to stop?

- ▶ as there are no deletions, we may stop if bucket is not full,
- ▶ `boost::unordered_flat_map` uses *overflow bits*.

Overflow bits

- ▶ when no space to insert key, leave a “continue mark”,
- ▶ use d bits, the overflow bit is a *hash value* in $\{0, \dots, d - 1\}$,
- ▶ this allows us to stop a search prematurely,
- ▶ more *meta-data* per bucket.

⇒ During insertion, we consider a fresh uniform and independent overflow bit each time needed.

Model for unsuccessful search

In our model

- ▶ each overflow bit is a fresh random number in $\{0, \dots, d-1\}$,
- ▶ if several are needed, they are independent.

Model for unsuccessful search

In our model

- ▶ each overflow bit is a fresh random number in $\{0, \dots, d-1\}$,
- ▶ if several are needed, they are independent.

Let $V_j(k)$ be the number of **full buckets** with j **overflow bits** on:

- ▶ Number of hops in unsuccessful search is geometric, parameter

$$p = \sum_{j=0}^d \frac{V_j(k)}{n} \times \frac{j}{d}.$$

- ▶ The expected number of hops is $\frac{1}{1-p}$.

Model for unsuccessful search

In our model

- ▶ each overflow bit is a fresh random number in $\{0, \dots, d-1\}$,
- ▶ if several are needed, they are independent.

Let $V_j(k)$ be the number of full buckets with j overflow bits on:

- ▶ Number of hops in unsuccessful search is geometric, parameter

$$p = \sum_{j=0}^d \frac{V_j(k)}{n} \times \frac{j}{d}.$$

- ▶ The expected number of hops is $\frac{1}{1-p}$.

We study $V_j(k)$ for $j = 0, \dots, d$. Observe $\sum_j V_j(k) = U_b(k)$.

Main result for unsuccessful search

Theorem (Nicaud, R., 26+)

Starting from an empty table with n buckets of size b , and d overflow bits, the number of full buckets with j overflow bits on at time k , $V_j(k)$, satisfies^a $V_j(k) = nv_j(k/N) + o(n)$ with probability tending to one, for all $k \leq \theta N$, where

$$v_j(t) = \binom{d}{j} e^{-(d-j)\lambda_b(t)/d} \int_0^{\lambda_b(t)} \frac{x^{b-1}}{(b-1)!} (e^{-x/d} - e^{-\lambda_b(t)/d})^j dx.$$

^a o term is uniform in k and j .

Main result for unsuccessful search

Theorem (Nicaud, R., 26+)

Starting from an empty table with n buckets of size b , and d overflow bits, the number of full buckets with j overflow bits on at time k , $V_j(k)$, satisfies^a $V_j(k) = nv_j(k/N) + o(n)$ with probability tending to one, for all $k \leq \theta N$, where

$$v_j(t) = \binom{d}{j} e^{-(d-j)\lambda_b(t)/d} \int_0^{\lambda_b(t)} \frac{x^{b-1}}{(b-1)!} (e^{-x/d} - e^{-\lambda_b(t)/d})^j dx.$$

^a o term is uniform in k and j .

Corollary

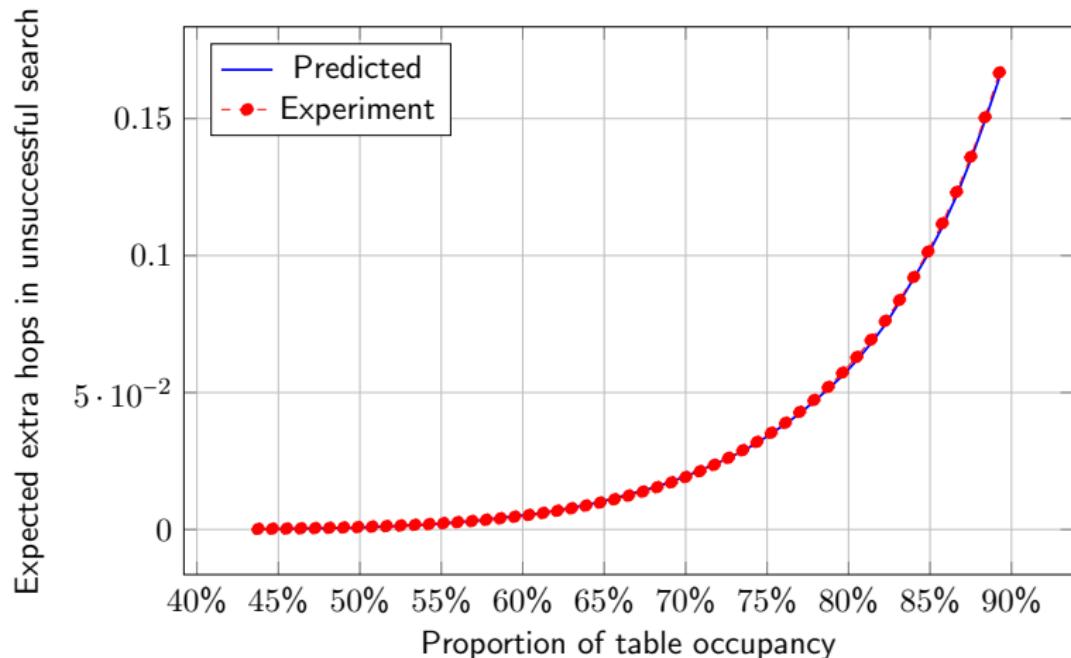
The expected cost of an unsuccessful search is

$$\left(1 - \int_0^{\lambda_b(k/N)} \frac{x^{b-1}}{(b-1)!} e^{-(1-1/d)x} (e^{-x/d} - e^{-\lambda_b(k/N)/d}) dx \right)^{-1} + o(1),$$

with probability tending to one.

Expected cost of unsuccessful search

Plot of a *single* run with $n = 2^{14} = 16\ 384$, $b = 15$, $d = 8$



The case $b = 1$

Overflow bits can be used **even** when buckets are of size $b = 1$:

- ▶ The idea for $b = d = 1$ appears in *Amble and Knuth. Ordered hash tables.* from 1974.
- ▶ When $b = 1$ we have $\lambda_b(t) = \log(\frac{1}{1-t})$.
- ▶ The **unsuccessful search times** are

$$\frac{1}{1-t} \times \frac{1}{1 + \frac{(1-t)^{-(1-1/d)} - 1}{1-1/d}}, \quad (d > 1), \quad \frac{1}{1-t} \times \frac{1}{1 + \log(\frac{1}{1-t})}, \quad (d = 1),$$

compared to $\frac{1}{1-t}$ without overflow bits.

Elements of the study of $V_j(k)$

- Change the notion of time:
 - ▶ instead of k insertions consider r **hops**,
 - ▶ k insertions corresponds to $r = R(k)$ hops.

Elements of the study of $V_j(k)$

- Change the notion of time:
 - ▶ instead of k insertions consider r hops,
 - ▶ k insertions corresponds to $r = R(k)$ hops.
- In the time-scale of hops

$$\mathbb{E}[\tilde{V}_j(r+1) - \tilde{V}_j(r) \mid \tilde{\mathcal{F}}_r] = (1 - \frac{j-1}{d})\tilde{V}_{j-1}(r) - (1 - \frac{j}{d})\tilde{V}_j(r),$$

for $j > 0$, and $\mathbb{E}[\tilde{V}_0(r+1) - \tilde{V}_0(r) \mid \tilde{\mathcal{F}}_r] = \tilde{U}_{b-1}(r) - \tilde{V}_0(r)$.

Elements of the study of $V_j(k)$

- Change the notion of time:
 - ▶ instead of k insertions consider r hops,
 - ▶ k insertions corresponds to $r = R(k)$ hops.

- In the time-scale of hops

$$\mathbb{E}[\tilde{V}_j(r+1) - \tilde{V}_j(r) \mid \tilde{\mathcal{F}}_r] = (1 - \frac{j-1}{d})\tilde{V}_{j-1}(r) - (1 - \frac{j}{d})\tilde{V}_j(r),$$

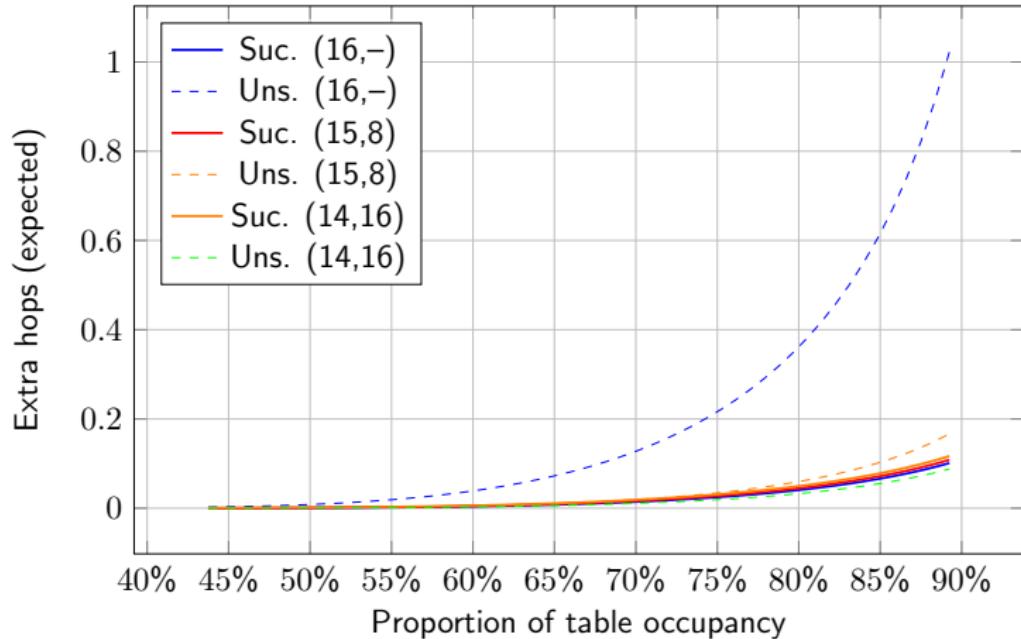
for $j > 0$, and $\mathbb{E}[\tilde{V}_0(r+1) - \tilde{V}_0(r) \mid \tilde{\mathcal{F}}_r] = \tilde{U}_{b-1}(r) - \tilde{V}_0(r)$.

- We use the Differential Equation Method, and then

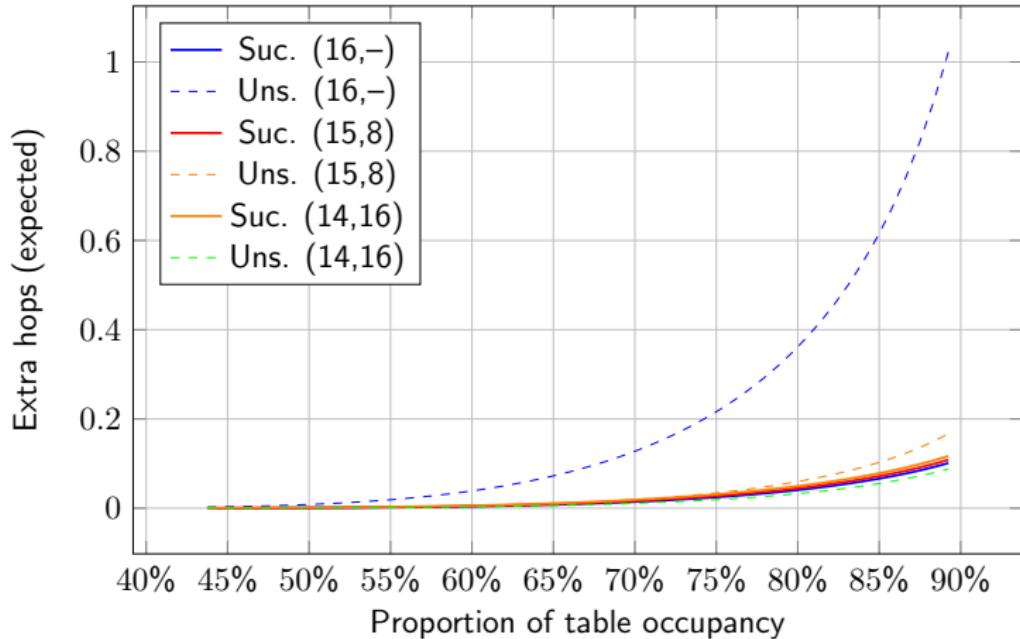
$$R(k) = \frac{N}{b} \lambda_b(k/N) + o(n),$$

to link both time-scales as $V_j(k) = \tilde{V}_j(R(k))$.

Different combinations of b and d



Different combinations of b and d



How to make sense of the difference ?

- ▶ number of bytes per bucket is the same in all three,
- ▶ here we talk about % of full, but capacities are different !
- ▶ compare when the number of inserted elements is the same ?

Recap and conclusions

- ⊕ The current implementation in *boost* is more complex
 buckets are not separated, they overlap.
- ⊕ Other models of pass-bits exist
 - ▶ same bit used every time we leave a mark²,
 - ▶ a counter of “passing” keys instead [F14 of Meta].
- ⊕ Model with suppression?

²P M Martini and W A Burkhard. Double hashing with multiple passbits. IJCS, 14(06):1165–1182, 2003.

Recap and conclusions

- ⊕ The current implementation in *boost* is more complex
buckets are not separated, they overlap.
- ⊕ Other models of pass-bits exist
 - ▶ same bit used every time we leave a mark²,
 - ▶ a counter of “passing” keys instead [F14 of Meta].
- ⊕ Model with suppression? $\Rightarrow U_{i,j}(k) = \# i$ elements and j on bits.

²P M Martini and W A Burkhard. Double hashing with multiple passbits. IJCS, 14(06):1165–1182, 2003.

Recap and conclusions

- ⊕ The current implementation in *boost* is more complex
buckets are not separated, they overlap.
- ⊕ Other models of pass-bits exist
 - ▶ same bit used every time we leave a mark²,
 - ▶ a counter of “passing” keys instead [F14 of Meta].
- ⊕ Model with suppression? $\Rightarrow U_{i,j}(k) = \# i$ elements and j on bits.

Conclusions

- ⊕ We have shown how techniques from graphs dynamics can be applied to hash tables.
- ⊕ Results are very precise and hold with high probability.
- ⊕ Introduction of SIMD and buckets of b leads to non-trivial behaviors.

²P M Martini and W A Burkhard. Double hashing with multiple passbits. IJCS, 14(06):1165–1182, 2003.

Thank you!