SIMD instructions in Hashtables

Pablo Rotondo

LIGM, Université Gustave Eiffel

Joint work with
Cyril Nicaud (LIGM)

Séminaire LIGM,
Champs-Sur-Marne, 27 January, 2026.

Introduction

» Aim: study and model actual implementations

e Engineers sometimes choose innovative implementations
e.g., TimSort in Python.

e Study choices in depth, make recommendations.

1/27

Introduction

» Aim: study and model actual implementations

e Engineers sometimes choose innovative implementations
e.g., TimSort in Python.

e Study choices in depth, make recommendations.

» Why not use textbook solutions?
e typical usage of data structures,

e architectural features of modern computers.

1/27

Introduction

» Aim: study and model actual implementations

e Engineers sometimes choose innovative implementations
e.g., TimSort in Python.

e Study choices in depth, make recommendations.

» Why not use textbook solutions?
e typical usage of data structures,

e architectural features of modern computers.

= This talk: SIMD instructions (Single Instruction, Multiple Data)
in modern HashTables.

1/27

A crash course in HashTables

Motivation
Implement an associative array m:
— universe U of keys k € U enormous,

— associate some keys k to values m[k],

— insert, search, delete...

2/27

A crash course in HashTables

Motivation
Implement an associative array m:
— universe U of keys k € U4 enormous,
— associate some keys k to values m[k],

— insert, search, delete...

Hashtables:

» Idea : use a small array A, of size n < |U|
— consider h : U — Z pseudo-random,
— insert k in bucket A[7] where i = h(k) modn.

» Problem : collisions, keys k1 and ko with h(k1) = h(ks).

2/27

A crash course in HashTables 2

> Collision resolution policy :

1. [External Hashing / Closed addressing] Each bucket A[i]
contains a linked list.

2. [Internal Hashing / Open addressing | If bucket is occupied,
find another that is free.

3/21

A crash course in HashTables 2

» Collision resolution policy :

1. [External Hashing / Closed addressing] Each bucket A[i]

contains a linked list.

0 16 12
1 9

2

3 23 7

2. [Internal Hashing / Open addressing | If bucket is occupied,

find another that is free.

3/21

A crash course in HashTables 2

» Collision resolution policy :

1. [External Hashing / Closed addressing] Each bucket A[:]
contains a linked list.

2. [Internal Hashing / Open addressing | If bucket is occupied,
find another that is free.

Bucket 0 Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Bucket 6 Bucket 7

16 9 10 2 14

[red arrow is indicative]

3/21

A crash course in HashTables 2

> Collision resolution policy :

1. [External Hashing / Closed addressing] Each bucket A[:]
contains a linked list.

2. [Internal Hashing / Open addressing | If bucket is occupied,
find another that is free.

> Rehashing policy:
— if load factor X5 s “big” (>0 € (0,1)), create larger array,

n
— must reinsert everything. [slow! but amortized overall]

3/21

Internal hashing / Open addressing

» Internal hashing / Open addressing more popular when looking for
performance (better locality).

» Many strategies to define the probe sequence.

427

Internal hashing / Open addressing

» Internal hashing / Open addressing more popular when looking for
performance (better locality).

» Many strategies to define the probe sequence.

Probing sequence

To search/insert x:
— Start at ig = h(z) mod n.

— If occupied, test i1,1o,... etc. in order.

427

Internal hashing / Open addressing

» Internal hashing / Open addressing more popular when looking for
performance (better locality).

» Many strategies to define the probe sequence.

Probing sequence

To search/insert x:
— Start at ig = h(x) mod n.

— If occupied, test i1,1o,... etc. in order.

Modulo n,
> Linear probing: iy =ig+1,i2=41+1, ...
» Quadratic probing: i; =ig+1, i =491 +2, ..., 4 =491 +7,...

» Double hashing: A(x) =ha(x), i1 =ig+A,ia =d1 + A, ...

427

Internal hashing / Open addressing

» Internal hashing / Open addressing more popular when looking for
performance (better locality).

» Many strategies to define the probe sequence.

Probing sequence

To search/insert x:
— Start at ig = h(x) mod n.

— If occupied, test i1,1o,... etc. in order.

Modulo n,
> Linear probing: iy =ig+1,i2=41+1, ...
» Quadratic probing: i; =ig+1, i =491 +2, ..., 4 =491 +7,...
» Double hashing: A(x) =ha(x), i1 =ig+A,ia =d1 + A, ...

Theoretical model: random probing model, each ¢; is taken uniformly

and independently from {0,...,n—1}.
4/21

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

5/27

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

Example: comparing vectors of 128 bits with 16 lanes of 1 byte

[4]4]4][4]4]4]4[4][4]4]4][4][4]4]4]4]
(9]51-2[4]7[4]-1[-1]-1}-1]-1}-1]-1}-1]-1}-1]

| -mm_cmpeq_epi8
[0]o]o[-1[0]-1[o[o[o]o]o[0[0]0]0]0]

5/27

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

Example: comparing vectors of 128 bits with 16 lanes of 1 byte

[4]4]4][4]4]4]4[4][4]4]4][4][4]4]4]4]
(9]51-2[4]7[4]-1[-1]-1}-1]-1}-1]-1}-1]-1}-1]

| -mm_cmpeq_epi8
[0]o]o[-1[0]-1[o[o[o]o]o[0[0]0]0]0]

Idea: buckets of b keys, keep header of metadata for each bucket

» reduced hash value (usually one byte) for each key

» when searching/inserting, compare reduced hash first

5/27

Using vectorization in hash tables

SIMD in a nutshell: large registers seen as vectors of several lanes.

Example: comparing vectors of 128 bits with 16 lanes of 1 byte

[4]4]4][4]4]4]4[4][4]4]4][4][4]4]4]4]
(9]51-2[4]7[4]-1[-1]-1}-1]-1}-1]-1}-1]-1}-1]

| -mm_cmpeq_epi8
[0]o]o[-1[0]-1[o[o[o]o]o[0[0]0]0]0]

Idea: buckets of b keys, keep header of metadata for each bucket

» reduced hash value (usually one byte) for each key

» when searching/inserting, compare reduced hash first

Principle of several modern hashtables:
boost: :unordered_flat map (b=15), Google Abseil Swiss tables
(b=16), F14 of Meta (b= 14)...

5/27

Using vectorization in hash tables 2

header I TIIIIIIIIIIII [TTI
table [TIIIITIIIITIITIT -~ TIIT

LT e TTITTITTTIT

<— bucket 0 — «<— b i —> < bucket n—-1 >
I I
[[

LIS SIS IS 15151515 15151515

eyl [[TTITTTTTT]

We consider the fingerprint byte

» to be 255 = —1 when the position is free,
> to be 254 = -2 when the position was deleted, [tombstone]

» else we have a reduced hash value.

6/27

Our model: parameters

We are interested in hops : [accesses to buckets]
» number of buckets accessed for a successful search,

» proportion of full buckets.

7/21

Our model: parameters

We are interested in hops : [accesses to buckets]
» number of buckets accessed for a successful search,

» proportion of full buckets.

Insert k distinct elements into a table with n buckets:
> probe sequence made of random numbers {0,...,n—1}.
» for the moment we do not consider deletions,

Later in talk: unsuccessful search.

7/21

Main results: proportion of occupancy
We are interested in hops :
» number of buckets accessed for a successful search,

» proportion of full buckets.

8/27

Main results: proportion of occupancy

We are interested in hops :
» number of buckets accessed for a successful search,

» proportion of full buckets.

Let U;(k) : # buckets with j occupied slots after & insertions,

Theorem [Nicaud, R, 26+]: proportion of occupancy
Suppose k<0 -N for € (0,1), N :=bxn the maximum capacity.
With probability tending to one, we have uniformly

Uj(k) = nuj(k[N) +o(n),

where w;(t) = #e”\(” for j=0,...,0-1, up(t) =1 - %, u;(t)
and A(t) = \p(t) is a special function we can compute?.

“Note that S(k) := ¥ jU; (k) increases always by 1, so > ju;(k) = bt.

8/27

Proportion of occupancy
Plot of a single run with n = 214 =16 384, b =15,

T T T
s0% ||~ Predicted |
°| |- e~ Experiment
%)
o
3 40% |- f 8
&0
3 30% | g
o«
o
c
L 20% | 5
S
&
& 10% [n
0% 5
| | | | | | | | | | |

40% 45% 50% 55% 60% 65% T70% T75% 80% 85% 90%
Proportion of table occupancy

Stopped at 6 = 0.875, maximum load of boost: :unordered_flat_map.

9/27

Main results: number of hops

The special function A(t) is associated to hops.

Let R(k) : be the total number of hops up the the k-th insertion,

10/27

Main results: number of hops

The special function A(t) is associated to hops.

Let R(k) : be the total number of hops up the the k-th insertion,

Theorem [Nicaud, R, 26+]: number of hops
Suppose k<60 -N for 8 € (0,1), N :=bxn the maximum capacity.
With probability tending to one,

R(k) =nXp(kE/N) + o(n),
Ap(t) is defined implicitly by

e S (b -3) Iy (1) = b-bt.

i<b

10/27

Successful search

We consider the usual model for successful search:
» Pick an element uniformly at random from the k present.

» Classical model, others are possible.

11/27

Successful search

We consider the usual model for successful search:

» Pick an element uniformly at random from the k present.

» Classical model, others are possible.

Corollary (Successful search)

With high probability, the average successful search time is
Ap(t)/(bt) +0(1), wheret =k/N.

11/27

Successful search

We consider the usual model for successful search:
» Pick an element uniformly at random from the k present.

» Classical model, others are possible.

Corollary (Successful search)

With high probability, the average successful search time is
Ap(t)/(bt) +0(1), wheret =k/N.

Proof.
The successful search time is R(k)/k. O

11/27

Successful search

Plot of a single run with n = 214 =16 384, b =15,

0.1
8.1072
6-1072
4-1072

2.1072

Extra hops in successul search

0

Stopped at 6 = 0.875, maximum load of boost: :unordered_flat_map.

—— Predicted

- o- Experiment

| | | | | | | | | | |
40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

Proportion of table occupancy

12/27

The hops function \y(t)

» Thecase b=1: A\i(t) = log(l%t). Successful search time
coincides with the classical %log(ﬁ).

» The case b =2 : using the —1-th branch of the Lambert-W

Ao(t) =-2-W_y (&) .

13/27

The hops function \y(t)

» Thecase b=1: A\i(t) = log(1 ;). Successful search time
coincides with the classical + log(1 7).

» The case b =2 : using the —1-th branch of the Lambert-W

Ao(t) =-2-W_y (&) .

Still, it remains logarithmic in order

Proposition

We have 10g() < (1) < blog() for all t. Moreover
Ap(t) ~log(1i) as t — 17 and N\p(t) ~ blog() ast—0".

13/27

The hops function \y(t)

» Thecase b=1: A\i(t) = log(1 ;). Successful search time
coincides with the classical + log(1 7).

» The case b =2 : using the —1-th branch of the Lambert-W

Ao(t) =-2-W_y (&) .

Still, it remains logarithmic in order

Proposition

We have 10g() < (1) < blog() for all t. Moreover
Ap(t) ~log(1i) as t — 17 and N\p(t) ~ blog() ast—0".

» Cost of a successful search is related to Ay(¢)/b.

> Effect is not simply dividing the search time by b !

13/27

Plan of the talk

=

. Introduction

2. Model and first results: successful search

3. Elements of the proof: techniques

4. Model and result for unsuccessful search

5. Conclusions and further work

A probabilistic recurrence: simulating occupancy

Let U;(k) : # buckets with j occupied slots after k insertions.

Given the situation at time k, which we call F,
+1, with probability gf'Ulb((]Z)) if >0,

Uj(k+1)-U;j(k) ={-1, with probability % if j<b,

0, otherwise.

14 /27

A probabilistic recurrence: simulating occupancy

Let U;(k) : # buckets with j occupied slots after k insertions.

Given the situation at time k, which we call F,
+1, with probability gf'Ulb((]Z)) if >0,

Uj(k+1)-U;j(k) ={-1, with probability % if j<b,

0, otherwise.

We have the conditional expectation

Uj-1(k) U; (k)

E[U;(k+1) - U;(k) | Fi] = 1j>ol_+b<k) B 1j<b1_@ ‘

14 /27

Wormald's Differential Equation Method

» Method introduced to study dynamics on graphs.

15/27

Wormald's Differential Equation Method

» Method introduced to study dynamics on graphs.

» System of equations for conditional expectations
E[Y;(k+1) - Y;(k) | Fi] = fj(k/N;Yi(k)/N,...,Ye(k)/N),

j=1,....¢

15/27

Wormald's Differential Equation Method

» Method introduced to study dynamics on graphs.

» System of equations for conditional expectations
E[Y;(k+1) - Y;(k) | Fi] = fj(k/N;Yi(k)/N,...,Ye(k)/N),

j=1,... 1.
» If |Yj(k+1)-Y;(k)|is “small” and functions f; are “regular”:

Yj(k) ~ Ny;(k/N),
with probability tending to one, where

yi(t) = filty(t), ... ue(t)),

yp(t) = fe(tyn(t), ... ue(t)).

15/27

Wormald's Differential Equation Method 2

Theorem (version adapted from Warnke'19)
Consider B =(N), v:=v(N) =0, A= A\(IN) = 0,
1. forall k< N and j € [/],
Pr(]Y;(k+1) - Y;(k)[< B(N)) 21 -7(N);
2. forall je[l], and k< N,
E[Y;(k+1) - Y;(k) | F] = £;(k/N; Yi(k)/N, ..., Yo(k)/N),
where the functions f; are L-Lipschitz on a domain D.

3. The initial Y (0) = (Y1(0),...,Y,(0)) satisfies
|Y'(0) - Nv|e < A-N for (0,v1,...,v,) € D.

— Let y(t) = (y1(t),...,ye(t)) be the solution to the system of
differential equations with y1(0) = v1,...,4¢(0) = vy.
— Let 6 >0 be such that (s,y(s)) € D for all s €[0,0].

For A\(N) = Q(1/N), with proba > 1 - 0¢N+~ - 2bexp(-N\?/(805%)),

|Y; (k) - Ny; (k/N)

<3eM\(N)-N = o(N),

for all j € [¢] and k < ON.

16 /27

Wormald's Differential Equation Method 3

Conclusion of the Theorem
For A\(N) = Q(1/N), with proba > 1 - 0¢N~ - 2bexp(-NA%/(803?)),

[¥; (k) - Ny; (k/N)| < 3¢"A(N) - N = o(N)

for all je[¢] and k <ON.

To apply the result, we require
» B(NN) can tend to infinity, but not too fast,
» ~v(N) should tend to 0 with Ny(N) — 0,
» A(N) - 0 but not too fast.

17/27

Wormald's Differential Equation Method 3

Conclusion of the Theorem
For A\(N) = Q(1/N), with proba > 1 - 0¢N~ - 2bexp(-NA%/(803?)),

[¥; (k) - Ny; (k/N)| < 3¢"A(N) - N = o(N)

for all je[¢] and k <ON.

To apply the result, we require
» B(NN) can tend to infinity, but not too fast,
» ~v(N) should tend to 0 with Ny(N) — 0,
» A(N) - 0 but not too fast.

— For the case of U;(k) we simply have S(N) =1 and A(NN) can
be any function such that NA2(N) - oo.

17/27

Wormald's Differential Equation Method 3

Conclusion of the Theorem
For A\(N) = Q(1/N), with proba > 1 - 0¢N~ - 2bexp(-NA%/(803?)),

[¥; () - Ny (k/N)] < 3¢ A(N) - N = o(N)

for all j € [¢] and k< 6N.

To apply the result, we require
» B(NN) can tend to infinity, but not too fast,
» ~v(N) should tend to 0 with Ny(N) — 0,
» A(N) - 0 but not too fast.

— For the case of U;(k) we simply have S(N) =1 and A(NN) can
be any function such that NA2(N) - oo.

— For the case of R(k), we can prove R(k+1) - R(k) > (log N)?
with proba O(e_(l_e)x(logN)2).

17/27

Wormald's Differential Equation Method 4

— In the case of U;(k) we obtain the system:

_ uo (t)
ug(t) = —bl_ﬁb(t))

ul(t) :b;ﬁ';b((?) —blﬁ;fgt), forie{1,...,b—1},

up—1 (t
uhn) =biE

18/27

Wormald's Differential Equation Method 4

— In the case of U;(k) we obtain the system:

_ uo (t)
ug(t) = _bl—zb(t))

ul(t) :b;ﬁ';b((?) —blﬁ;fgt), forie{1,...,b—1},

up—1 (t
uhn) =biE

This system appears, from a different process in the work of Wormald.

18/27

Wormald's Differential Equation Method 4

— In the case of U;(k) we obtain the system:

_ uo (t)
ug(t) = —bl_ﬂb(t))

ul(t) :b;ﬁ;lb((?) —blf;fgt), forie{1,...,b—1},

up—1 (t
uhn) =biE

This system appears, from a different process in the work of Wormald.

— For R(k) the expected value is

E[R(k+1)-R(B)|Fi] = 3 r(1-Up(k)) Uy (k) n) = —

r>1

which relates to A\, (%) through \y(t) = bfot #ﬁ(t)'

1= Us(k)/n

18/27

Intuition behind the Differential Equation Method

Why such a strong concentration?!

> Underlying martingale:
Zi(k) = Zoer,(Yi(a+1) = Yi(a) - fi(Y1(a)/N,...,Yi(a)[N)),
with E[Z;(k)] = 0.

» Maximal Azuma-Hoeffding Theorem implies Z;(k) ~ 0 with high
probability.

» Convenient rewriting

Yi(k)~Nyi(k[N) = Z;(k)+ Y (fi(P2 L Y8y N (g (2t g (2)),

a<k

helps prove bound high probability bound by recurrence.

1This is the proof from Warnke'19.
19/27

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:
» we search for a key not in the table,

> probe sequence made of random numbers {0,...,n -1},

20/27

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:
» we search for a key not in the table,

> probe sequence made of random numbers {0,...,n -1},

When to stop?
> as there are no deletions, we may stop if bucket is not full,

> boost: :unordered _flat map uses overflow bits.

20/27

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:
» we search for a key not in the table,

> probe sequence made of random numbers {0,...,n -1},

When to stop?
> as there are no deletions, we may stop if bucket is not full,

> boost: :unordered_flat_map uses overflow bits.

Overflow bits
> when no space to insert key, leave a “continue mark”,
» use d bits, the overflow bit is a hash value in {0,...,d -1},
> this allows us to stop a search prematurely,

> more meta-data per bucket.

20/27

Model for unsuccessful search

Insert k distinct elements into a table with n buckets:
» we search for a key not in the table,

> probe sequence made of random numbers {0,...,n -1},

When to stop?
> as there are no deletions, we may stop if bucket is not full,

> boost: :unordered_flat_map uses overflow bits.

Overflow bits
> when no space to insert key, leave a “continue mark”,
» use d bits, the overflow bit is a hash value in {0,...,d -1},
> this allows us to stop a search prematurely,

> more meta-data per bucket.

= During insertion, we consider a fresh uniform and independent
overflow bit each time needed.

20/27

Model for unsuccessful search

In our model
» each overflow bit is a fresh random number in {0,...,d -1},

> if several are needed, they are independent.

21/27

Model for unsuccessful search

In our model
» each overflow bit is a fresh random number in {0,...,d -1},
> if several are needed, they are independent.

Let V;(k) be the number of full buckets with j overflow bits on:

> Number of hops in unsuccessful search is geometric, parameter

& Vi (k)

X

p =
§=0

n

» The expected number of hops is ﬁ.

21/27

Model for unsuccessful search

In our model
» each overflow bit is a fresh random number in {0,...,d -1},
> if several are needed, they are independent.

Let V;(k) be the number of full buckets with j overflow bits on:

> Number of hops in unsuccessful search is geometric, parameter

4Vi(k) |

p:
j=0 T

» The expected number of hops is ﬁ.

We study V;(k) for j =0,...,d. Observe 3; V;(k) = Up(k).

21/27

Main result for unsuccessful search
Theorem (Nicaud, R., 26+)

Starting from an empty table with n buckets of size b, and d
overflow bits, the number of full buckets with j overflow bits on at
time k, V;(k), satisfies® V;(k) = nv;(k/N) + o(n) with probability
tending to one, for all k < ON, where

. Ap(t) _ .
v(t) = (j)e%d—am(t)/d [0 ’ (el — e Oy

?0 term is uniform in k and j.

22/27

Main result for unsuccessful search

Theorem (Nicaud, R., 26+)

Starting from an empty table with n buckets of size b, and d
overflow bits, the number of full buckets with j overflow bits on at
time k, V;(k), satisfies® V;(k) = nv;(k/N) + o(n) with probability
tending to one, for all k < ON, where

. Ap(t) _ .
v;(t) = (j)e‘(d—J)Ab(t)/d [0 ’ (iill)! (e_l’/d - e‘/\b(t)/d)ﬁdx.

?0 term is uniform in k and j.

Corollary

The expected cost of an unsuccessful search is

-1
(1 ~ [OAb(k/N) (ii—ll)le_(l_1/d)x(e_x/d _e—Ab(k/N)/d)dl,) +o(1),

with probability tending to one.

22 /27

Expected cost of unsuccessful search

Plot of a single run with n =24 =16 384, b=15, d=8

T T T
—— Predicted
0.15 |- |~ *- Experiment il

5-1072 | .

O, -

| | | | | | | | | | |
40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%
Proportion of table occupancy

Expected extra hops in unsuccessful search

23/27

The case b=1

Overflow bits can be used even when buckets are of size b = 1:

» The idea for b=d =1 appears in Amble and Knuth. Ordered
hash tables. from 1974.

» When b =1 we have \y(t) = log(%)

» The unsuccessful search times are

1 1 1 1
d>1), , (d=1)
1—tx Ql%i%zw : -) 1—txl+l%ﬂ1;) ()

compared to ﬁ without overflow bits.

24 /27

Elements of the study of V;(k)

— Change the notion of time:
» instead of k insertions consider r hops,

» k insertions corresponds to r = R(k) hops.

25/27

Elements of the study of V;(k)

— Change the notion of time:
» instead of k insertions consider r hops,

» k insertions corresponds to r = R(k) hops.

— In the time-scale of hops
B[V;(r+ 1) = Vi(r)| £] = (1= Z)V5a(r) - (1= T (),

for 7> 0, and E[Vo(r + 1) = Vo(r) ‘ﬁr] = Up1(r) = Vo(r).

25/27

Elements of the study of V;(k)

— Change the notion of time:
» instead of k insertions consider r hops,

» k insertions corresponds to r = R(k) hops.

— In the time-scale of hops
B[V (r+1) = Vi) |] = (1= Z)Via(0) - (1= V().
for 7> 0, and E[Vo(r + 1) = Vo(r) ‘.7:}] = Up_1(r) = Vo(7).
— We use the Differential Equation Method, and then
R(k) = X0 (k/N) + o(n),

to link both time-scales as V;(k) = V;(R(k)).

25/27

Different

Extra hops (expected)

1

0.8

0.6

0.4

0.2

0

combinations of b and d
— Suc. (16,_) !
-~~~ Uns. (16,-) /
— Suc. (15.8) ,

Uns. (15,8) /

Suc. (14,16) g
~ Uns. (14,16) .

| | | | | | | | | | |
40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

Proportion of table occupancy

26 /27

Different

1
0.8
0.6

0.4

Extra hops (expected)

0.2

0

‘com‘bina‘\tior‘]s of b gnd ‘d

— Suc. (16,-) :
--- Uns. (16,-) i
— Suc. (15,8) ;
Uns. (15,8) /
Suc. (14,16) K
Uns. (14,16) .

| | | | | | | | | | |
40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

Proportion of table occupancy

How to make sense of the difference ?

> number of bytes per bucket is the same in all three,

» here we talk about % of full, but capacities are different !

» compare when the number of inserted elements is the same ?

26 /27

Recap and conclusions

@ The current implementation in boost is more complex
buckets are not separated, they overlap.

@ Other models of pass-bits exist

> same bit used every time we leave a mark?,
» a counter of “passing” keys instead [F14 of Meta].

@ Model with suppression?

2P M Martini and W A Burkhard. Double hashing with multiple passbits.

1JCS, 14(06):1165-1182, 2003.
27 /27

Recap and conclusions

@ The current implementation in boost is more complex
buckets are not separated, they overlap.

@ Other models of pass-bits exist

> same bit used every time we leave a mark?,
» a counter of “passing” keys instead [F14 of Meta].

® Model with suppression? = U, (k) = # i elements and j on bits.

2P M Martini and W A Burkhard. Double hashing with multiple passbits.

1JCS, 14(06):1165-1182, 2003.
27 /27

Recap and conclusions

@ The current implementation in boost is more complex
buckets are not separated, they overlap.

@ Other models of pass-bits exist

> same bit used every time we leave a mark?,
» a counter of “passing” keys instead [F14 of Meta].

® Model with suppression? = U, (k) = # i elements and j on bits.

Conclusions

® We have shown how techniques from graphs dynamics can be
applied to hash tables.

@ Results are very precise and hold with high probability.

® Introduction of SIMD and buckets of b leads to non-trivial behaviors.

2P M Martini and W A Burkhard. Double hashing with multiple passbits.

1JCS, 14(06):1165-1182, 2003.
27 /27

Thank you!

	Introduction
	Model and first results: successful search
	Elements of the proof: techniques
	Model and result for unsuccessful search
	Conclusions and further work

